946 resultados para Numerical error
Resumo:
Elliptic differential equations, finite element method, mortar element method, streamline diffusion FEM, upwind method, numerical method, error estimate, interpolation operator, grid generation, adaptive refinement
Resumo:
Multiphase flows, hyperbolic model, Godunov method, nozzle flow, nonstrictly hyperbolic
Resumo:
Electrokinetic transport, electrochromatography, electroosmotic flow, electrophoresis, concentration polarization, fixed beds, monoliths, dynamic NMR microscopy, quantitative confocal laser scanning microscopy, mathematical modelling, numerical analysis
Resumo:
Microstrip antenna, Wideband antennas, high gain antennas, Microstrip filters, DGS filters , low-pass filter, band-pass filter
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2006
Resumo:
Magdeburg, Univ., Diss., 2007 (Nicht für den Austausch)
Resumo:
Fluidized beds, granulation, heat and mass transfer, calcium dynamics, stochastic process, finite element methods, Rosenbrock methods, multigrid methods, parallelization
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2006
Resumo:
The classical central limit theorem states the uniform convergence of the distribution functions of the standardized sums of independent and identically distributed square integrable real-valued random variables to the standard normal distribution function. While first versions of the central limit theorem are already due to Moivre (1730) and Laplace (1812), a systematic study of this topic started at the beginning of the last century with the fundamental work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit theorem are available for a multitude of settings. This includes, e.g., Banach space valued random variables as well as substantial relaxations of the assumptions of independence and identical distributions. Furthermore, explicit error bounds are established and asymptotic expansions are employed to obtain better approximations. Classical error estimates like the famous bound of Berry and Esseen are stated in terms of absolute moments of the random summands and therefore do not reflect a potential closeness of the distributions of the single random summands to a normal distribution. Non-classical approaches take this issue into account by providing error estimates based on, e.g., pseudomoments. The latter field of investigation was initiated by work of Zolotarev in the 1960's and is still in its infancy compared to the development of the classical theory. For example, non-classical error bounds for asymptotic expansions seem not to be available up to now ...
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012