992 resultados para Numerical Techniques
Resumo:
The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
There is not a specific test to diagnose Alzheimer`s disease (AD). Its diagnosis should be based upon clinical history, neuropsychological and laboratory tests, neuroimaging and electroencephalography (EEG). Therefore, new approaches are necessary to enable earlier and more accurate diagnosis and to follow treatment results. In this study we used a Machine Learning (ML) technique, named Support Vector Machine (SVM), to search patterns in EEG epochs to differentiate AD patients from controls. As a result, we developed a quantitative EEG (qEEG) processing method for automatic differentiation of patients with AD from normal individuals, as a complement to the diagnosis of probable dementia. We studied EEGs from 19 normal subjects (14 females/5 males, mean age 71.6 years) and 16 probable mild to moderate symptoms AD patients (14 females/2 males, mean age 73.4 years. The results obtained from analysis of EEG epochs were accuracy 79.9% and sensitivity 83.2%. The analysis considering the diagnosis of each individual patient reached 87.0% accuracy and 91.7% sensitivity.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive probabilistic model for simulating dendrite morphology and investigating dendritic growth kinetics during solidification has been developed, based on a modified Cellular Automaton (mCA) for microscopic modeling of nucleation, growth of crystals and solute diffusion. The mCA model numerically calculated solute redistribution both in the solid and liquid phases, the curvature of dendrite tips and the growth anisotropy. This modeling takes account of thermal, curvature and solute diffusion effects. Therefore, it can simulate microstructure formation both on the scale of the dendrite tip length. This model was then applied for simulating dendritic solidification of an Al-7%Si alloy. Both directional and equiaxed dendritic growth has been performed to investigate the growth anisotropy and cooling rate on dendrite morphology. Furthermore, the competitive growth and selection of dendritic crystals have also investigated.
Resumo:
Nanocomposite materials have received considerable attention in recent years due to their novel properties. Grain boundaries are considered to play an important role in nanostructured materials. This work focuses on the finite element analysis of the effect of grain boundaries on the overall mechanical properties of aluminium/alumina composites. A grain boundary is incorporated into the commonly used unit cell model to investigate its effect on material properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the ''effective'' plastic property of the grain boundary is estimated. In addition, the strengthening mechanism is also discussed based on the Estrin-Mecking model.
Resumo:
Background/Aims: Cytokines have a significant role in the response to injury following liver transplantation, but the origin and course of such molecules are not completely known. The aim of this study was to evaluate the production and liver metabolism of the inflammatory cytokines interleukin (IL)-1 beta, IL-6, IL-8, interferon (IFN)-Y and tumor necrosis factor (TNF)-alpha in orthotopic liver transplantation (OLT), comparing the conventional and the piggyback methods. Methodology: We performed a study of 30 patients who underwent elective OLT and were randomized for the conventional or piggyback techniques at the beginning of the operation. The amount of cytokines and their hepatic metabolism were calculated based on plasma concentrations and vascular blood flow at 2, 5, 10, 15, 30, 60, 90, and 120 minutes after revascularization. Results: The amount of IL-1 beta in portal blood was higher in patients who underwent surgery using the conventional technique (estimate interest = 63,783.9 +/- 16,586.1 pg/min, versus 11,979.6 +/- 16,585.7 pg/min in the piggyback group, p=0.035). There were no significant differences between the two operative`s methods for IL-6, IL-8, IFN-Y and TNF-alpha production. The hepatic metabolism of cytokines was not different between groups. Although all the curves showed higher amounts of cytokines with the conventional technique, these were not statistically significant. Conclusion: The study shows the similarity between the two techniques concerning the stimuli for the production of inflammatory molecules.
Resumo:
Capillary C4d deposition has been recognized as a marker of antibody-mediated rejection (AMR). Although the detection of capillary C4d by means of immunofluorescence (IF) in cryostat sections is well established, frozen tissue is not always available, thus limiting the diagnosis of AMR. The aim of the present study was to analyze different techniques for C4d staining and the prevalence of C4d in renal allograft biopsies. Detection of C4d was carried out using IF or immunohistochemistry (IHC) on frozen and paraffin sections of renal allograft biopsies available from the same patients. Biopsies obtained from 20 patients were classified into 3 groups: no rejection, acute rejection, and chronic allograft nephropathy (CAN). The capillary C4d deposition prevalence in frozen-IF, considered the gold standard technique for C4d detection, was 45% (9/20 cases). Compared with frozen-IF, the frozen-IHC technique presented an 85% concordance rate (17/20 cases; r =.70; P <.001; sensitivity = 77.8%; specificity = 90.9%). The paraffin-IF technique showed similar results, with an 80% concordance rate (16/20 cases; r =.64; P <.005; sensitivity = 55.6%; specificity = 100%), whereas C4d detection occurred in only 65% of paraffin-IHC cases (13/20; r =.30; not significant; sensitivity = 66.7%; specificity = 63.6%). No capillary C4d deposition was detected in cases without evidence of rejection. However, 4/7 cases (57%) of acute rejection were C4d positive. In the CAN group, 5111 cases (45%) were C4d positive. In conclusion, these results demonstrated that frozen-IHC and paraffin-IF can be considered alternative techniques to frozen-IF for C4d detection. The paraffin-IHC technique displayed the lowest concordance rate for C4d detection.
Resumo:
Field studies have shown that the elevation of the beach groundwater table varies with the tide and such variations affect significantly beach erosion or accretion. In this paper, we present a BEM (Boundary Element Method) model for simulating the tidal fluctuation of the beach groundwater table. The model solves the two-dimensional flow equation subject to free and moving boundary conditions, including the seepage dynamics at the beach face. The simulated seepage faces were found to agree with the predictions of a simple model (Turner, 1993). The advantage of the present model is, however, that it can be used with little modification to simulate more complicated cases, e.g., surface recharge from rainfall and drainage in the aquifer may be included (the latter is related to beach dewatering technique). The model also simulated well the field data of Nielsen (1990). In particular, the model replicated three distinct features of local water table fluctuations: steep rising phase versus flat falling phase, amplitude attenuation and phase lagging.
Resumo:
High-pressure homogenization is a key unit operation used to disrupt cells containing intracellular bioproducts. Modeling and optimization of this unit are restrained by a lack of information on the flow conditions within a homogenizer value. A numerical investigation of the impinging radial jet within a homogenizer value is presented. Results for a laminar and turbulent (k-epsilon turbulent model) jet are obtained using the PHOENICS finite-volume code. Experimental measurement of the stagnation region width and correlation of the cell disruption efficiency with jet stagnation pressure both indicate that the impinging jet in the homogenizer system examined is likely to be laminar under normal operating conditions. Correlation of disruption data with laminar stagnation pressure provides a better description of experimental variability than existing correlations using total pressure drop or the grouping 1/Y(2)h(2).
Resumo:
Background: In this study, we analyzed the time course of hemodynamic efficiency and follow-up in Fontan candidates who underwent the bidirectional Glenn procedure for staged intracardiac cavopulmonary connection (ICPC). Methods: Between 1991 and 2008, 52 patients with univentricular heart (mean age, 3.3 years; range, 2-8 years; 27 female patients [51.9%]) underwent ICPC. The cardiac malformations were as follows: tricuspid atresia, 25 cases (48.0%); common ventricle, 16 cases (30.7%); and pulmonary atresia with intact ventricular septum, 11 cases (21.1%). The intracardiac cavopulmonary procedure was indicated for all 52 cases. In 42 patients (80.7%), an intra-atrial lateral tunnel was constructed with a bovine pericardium patch. In the last 10 consecutive cases (19.3%), we performed a modified surgical technique in which we implanted an intra-atrial corrugated bovine pericardium tube sutured around the superior and inferior vena cava ostium. In all cases, a 4-mm fenestration was made to reduce the intratunnel pressure. All 52 patients had previously undergone a Glenn operation. Results: There were 2 hospital deaths (3.8%) and no recorded late deaths. During the follow-up, all patients were medicated with antiplatelet drugs. To evaluate the hemodynamic performance, we used Doppler echocardiography, computed tomography, and magnetic nuclear resonance studies. There were no prosthesis thromboses during this follow-up period. To evaluate cardiac arrhythmias, we conducted a Holter study. The last 10 patients with an intra-atrial conduit (IAC) presented with sinus rhythm and no arrhythmias during the last 4 years. The 50 surviving patients (96.1%) have been followed up for 6 to 204 months; all these patients are free of reoperation. Conclusion: The Glenn operation, which is performed at an early age, prepares the pulmonary bed to receive the ICPC. The midterm results of the intracardiac Fontan procedure seem to be good. The modified surgical procedure (IAC) can be a good alternative technique to the Fontan procedure in suitable patients.
Resumo:
Objective: To determine the effect of semen storage and separation techniques on sperm DNA fragmentation. Design: Controlled clinical study. Setting: An assisted reproductive technology laboratory. Patient(s): Thirty normoozospermic semen samples obtained from patients undergoing infertility evaluation. Intervention(s): One aliquot from each sample was immediately prepared (control) for the sperm chromatin dispersion assay (SCD). Aliquots used to assess storage techniques were treated in the following ways: snap frozen by liquid nitrogen immersion, slow frozen with Tris-yolk buffer and glycerol, kept on ice for 24 hours or maintained at room temperature for 4 and 24 hours. Aliquots used to assess separation techniques were processed by the following methods: washed and centrifuged in media, swim-up from washed sperm pellet, density gradient separation, density gradient followed by swim-up. DNA integrity was then measured by SCD. Main Outcome Measure(s): DNA fragmentation as measured by SCD. Result(s): There was no significant difference in fragmentation among the snap frozen, slow frozen, and wet-ice groups. Compared to other storage methods short-term storage at room temperature did not impact DNA fragmentation yet 24 hours storage significantly increased fragmentation. Swim-up, density gradient and density gradient/swim-up had significantly reduced DNA fragmentation levels compared with washed semen. Postincubation, density gradient/swim-up showed the lowest fragmentation levels. Conclusion(s): The effect of sperm processing methods on DNA fragmentation should be considered when selecting storage or separation techniques for clinical use. (Fertil Steril (R) 2010;94:2626-30. (C) 2010 by American Society for Reproductive Medicine.)