996 resultados para Norms modelling
Resumo:
The crosstalk between fibroblasts and keratinocytes is a vital component of the wound healing process, and involves the activity of a number of growth factors and cytokines. In this work, we develop a mathematical model of this crosstalk in order to elucidate the effects of these interactions on the regeneration of collagen in a wound that heals by second intention. We consider the role of four components that strongly affect this process: transforming growth factor-beta, platelet-derived growth factor, interleukin-1 and keratinocyte growth factor. The impact of this network of interactions on the degradation of an initial fibrin clot, as well as its subsequent replacement by a matrix that is mainly comprised of collagen, is described through an eight-component system of nonlinear partial differential equations. Numerical results, obtained in a two-dimensional domain, highlight key aspects of this multifarious process such as reepithelialisation. The model is shown to reproduce many of the important features of normal wound healing. In addition, we use the model to simulate the treatment of two pathological cases: chronic hypoxia, which can lead to chronic wounds; and prolonged inflammation, which has been shown to lead to hypertrophic scarring. We find that our model predictions are qualitatively in agreement with previously reported observations, and provide an alternative pathway for gaining insight into this complex biological process.
Resumo:
The emergence of semantic technologies to deal with the underlying meaning of things, instead of a purely syntactical representation, has led to new developments in various fields, including business process modeling. Inspired by artificial intelligence research, technologies for semantic Web services have been proposed and extended to process modeling. However, the applicablility of semantic Web services for semantic business processes is limited because business processes encompass wider requirements of business than Web services. In particular, processes are concerned with the composition of tasks, that is, in which order activities are carried out, regardless of their implementation details; resources assigned to carry out tasks, such as machinery, people, and goods; data exchange; and security and compliance concerns.
Resumo:
A wireless sensor network system must have the ability to tolerate harsh environmental conditions and reduce communication failures. In a typical outdoor situation, the presence of wind can introduce movement in the foliage. This motion of vegetation structures causes large and rapid signal fading in the communication link and must be accounted for when deploying a wireless sensor network system in such conditions. This thesis examines the fading characteristics experienced by wireless sensor nodes due to the effect of varying wind speed in a foliage obstructed transmission path. It presents extensive measurement campaigns at two locations with the approach of a typical wireless sensor networks configuration. The significance of this research lies in the varied approaches of its different experiments, involving a variety of vegetation types, scenarios and the use of different polarisations (vertical and horizontal). Non–line of sight (NLoS) scenario conditions investigate the wind effect based on different vegetation densities including that of the Acacia tree, Dogbane tree and tall grass. Whereas the line of sight (LoS) scenario investigates the effect of wind when the grass is swaying and affecting the ground-reflected component of the signal. Vegetation type and scenarios are envisaged to simulate real life working conditions of wireless sensor network systems in outdoor foliated environments. The results from the measurements are presented in statistical models involving first and second order statistics. We found that in most of the cases, the fading amplitude could be approximated by both Lognormal and Nakagami distribution, whose m parameter was found to depend on received power fluctuations. Lognormal distribution is known as the result of slow fading characteristics due to shadowing. This study concludes that fading caused by variations in received power due to wind in wireless sensor networks systems are found to be insignificant. There is no notable difference in Nakagami m values for low, calm, and windy wind speed categories. It is also shown in the second order analysis, the duration of the deep fades are very short, 0.1 second for 10 dB attenuation below RMS level for vertical polarization and 0.01 second for 10 dB attenuation below RMS level for horizontal polarization. Another key finding is that the received signal strength for horizontal polarisation demonstrates more than 3 dB better performances than the vertical polarisation for LoS and near LoS (thin vegetation) conditions and up to 10 dB better for denser vegetation conditions.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Despite the extent of work recently done on collision risk analysis in port waters, little is known about the influencing factors of the risk. This paper develops a technique for modeling collision risks in port waterways in order to examine the associations between the risks and the geometric, traffic, and regulatory control characteristics of waterways. A binomial logistic model, which accounts for the correlations in the risks of a particular fairway at different time periods, is derived from traffic conflicts and calibrated for the Singapore port fairways. Estimation results show that the fairways attached to shoreline, traffic intersection and international fairway attribute higher risks, whereas those attached to confined water and local fairway possess lower risks. Higher risks are also found in the fairways featuring higher degree of bend, lower depth of water, higher numbers of cardinal and isolated danger marks, higher density of moving ships and lower operating speed. The risks are also found to be higher for night-time conditions.
Resumo:
A Cooperative Collision Warning System (CCWS) is an active safety techno- logy for road vehicles that can potentially reduce traffic accidents. It provides a driver with situational awareness and early warnings of any possible colli- sions through an on-board unit. CCWS is still under active research, and one of the important technical problems is safety message dissemination. Safety messages are disseminated in a high-speed mobile environment using wireless communication technology such as Dedicated Short Range Communication (DSRC). The wireless communication in CCWS has a limited bandwidth and can become unreliable when used inefficiently, particularly given the dynamic nature of road traffic conditions. Unreliable communication may significantly reduce the performance of CCWS in preventing collisions. There are two types of safety messages: Routine Safety Messages (RSMs) and Event Safety Messages (ESMs). An RSM contains the up-to-date state of a vehicle, and it must be disseminated repeatedly to its neighbouring vehicles. An ESM is a warning message that must be sent to all the endangered vehi- cles. Existing RSM and ESM dissemination schemes are inefficient, unscalable, and unable to give priority to vehicles in the most danger. Thus, this study investigates more efficient and scalable RSM and ESM dissemination schemes that can make use of the context information generated from a particular traffic scenario. Therefore, this study tackles three technical research prob- lems, vehicular traffic scenario modelling and context information generation, context-aware RSM dissemination, and context-aware ESM dissemination. The most relevant context information in CCWS is the information about possible collisions among vehicles given a current vehicular traffic situation. To generate the context information, this study investigates techniques to model interactions among multiple vehicles based on their up-to-date motion state obtained via RSM. To date, there is no existing model that can represent interactions among multiple vehicles in a speciffic region and at a particular time. The major outcome from the first problem is a new interaction graph model that can be used to easily identify the endangered vehicles and their danger severity. By identifying the endangered vehicles, RSM and ESM dis- semination can be optimised while improving safety at the same time. The new model enables the development of context-aware RSM and ESM dissemination schemes. To disseminate RSM efficiently, this study investigates a context-aware dis- semination scheme that can optimise the RSM dissemination rate to improve safety in various vehicle densities. The major outcome from the second problem is a context-aware RSM dissemination protocol. The context-aware protocol can adaptively adjust the dissemination rate based on an estimated channel load and danger severity of vehicle interactions given by the interaction graph model. Unlike existing RSM dissemination schemes, the proposed adaptive scheme can reduce channel congestion and improve safety by prioritising ve- hicles that are most likely to crash with other vehicles. The proposed RSM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed RSM protocol outperforms existing pro- tocols in terms of efficiency, scalability and safety. To disseminate ESM efficiently, this study investigates a context-aware ESM dissemination scheme that can reduce unnecessary transmissions and deliver ESMs to endangered vehicles as fast as possible. The major outcome from the third problem is a context-aware ESM dissemination protocol that uses a multicast routing strategy. Existing ESM protocols use broadcast rout- ing, which is not efficient because ESMs may be sent to a large number of ve- hicles in the area. Using multicast routing improves efficiency because ESMs are sent only to the endangered vehicles. The endangered vehicles can be identified using the interaction graph model. The proposed ESM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed ESM protocol can prevent potential accidents from occurring better than existing ESM protocols. The context model and the RSM and ESM dissemination protocols can be implemented in any CCWS development to improve the communication and safety performance of CCWS. In effect, the outcomes contribute to the realisation of CCWS that will ultimately improve road safety and save lives.
Resumo:
Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This paper investigates the application of virtual environment and augmented reality technologies to remote business process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in a shared workspace. We report on the evaluation of a prototype system with five key informants. The results indicate that this approach to business process modelling is suited to remote collaborative task settings, and stakeholders may indeed benefit from using augmented reality interfaces.
Resumo:
Food modelling systems such as the Core Foods and the Australian Guide to Healthy Eating are frequently used as nutritional assessment tools for menus in ‘well’ groups (such as boarding schools, prisons and mental health facilities), with the draft Foundation and Total Diets (FATD) the latest revision. The aim of this paper is to apply the FATD to an assessment of food provision in a long stay, ‘well’, group setting to determine its usefulness as a tool. A detailed menu review was conducted in a 1000 bed male prison, including verification of all recipes. Full diet histories were collected on 106 prisoners which included foods consumed from the menu and self funded snacks. Both the menu and diet histories were analysed according to core foods, with recipes used to assist in quantification of mixed dishes. Comparison was made of average core foods with Foundation Diet recommendations (FDR) for males. Results showed that the standard menu provided sufficient quantity for 8 of 13 FDRs, however was low in nuts, legumes, refined cereals and marginally low in fruits and orange vegetables. The average prisoner diet achieved 9 of 13 FDRs, notably with margarines and oils less than half and legumes one seventh of recommended. Overall, although the menu and prisoner diets could easily be assessed using the FDRs, it was not consistent with recommendations. In long stay settings other Nutrient Reference Values not modelled in the FATDS need consideration, in particular, Suggested Dietary Targets and professional judgement is required in interpretation.
Resumo:
We utilise the well-developed quantum decision models known to the QI community to create a higher order social decision making model. A simple Agent Based Model (ABM) of a society of agents with changing attitudes towards a social issue is presented, where the private attitudes of individuals in the system are represented using a geometric structure inspired by quantum theory. We track the changing attitudes of the members of that society, and their resulting propensities to act, or not, in a given social context. A number of new issues surrounding this "scaling up" of quantum decision theories are discussed, as well as new directions and opportunities.
Resumo:
In this paper, a three-dimensional nonlinear rigid body model has been developed for the investigation of the crashworthiness of a passenger train using the multibody dynamics approach. This model refers to a typical design of passenger cars and train constructs commonly used in Australia. The high-energy and low-energy crush zones of the cars and the train constructs are assumed and the data are explicitly provided in the paper. The crash scenario is limited to the train colliding on to a fixed barrier symmetrically. The simulations of a single car show that this initial design is only applicable for the crash speed of 35 km/h or lower. For higher speeds (e.g. 140 km/h), the crush lengths or crush forces or both the crush zone elements will have to be enlarged. It is generally better to increase the crush length than the crush force in order to retain the low levels of the longitudinal deceleration of the passenger cars.
Resumo:
Current complication rates for adolescent scoliosis surgery necessitate the development of better surgical planning tools to improve outcomes. Here we present our approach to developing finite element models of the thoracolumbar spine for deformity surgery simulation, with patient-specific model anatomy based on low-dose pre-operative computed tomography scans. In a first step towards defining patient-specific tissue properties, an initial 'benchmark' set of properties were used to simulate a clinically performed pre-operative spinal flexibility assessment, the fulcrum bending radiograph. Clinical data for ten patients were compared with the simulated results for this assessment and in cases where these data differed by more than 10%, soft tissue properties for the costo-vertebral joint (CVJt) were altered to achieve better agreement. Results from these analyses showed that changing the CVJt stiffness resulted in acceptable agreement between clinical and simulated flexibility in two of the six cases. In light of these results and those of our previous studies in this area, it is suggested that spinal flexibility in the fulcrum bending test is not governed by any single soft tissue structure acting in isolation. More detailed biomechanical characterisation of the fulcrum bending test is required to provide better data for determination of patient-specific soft tissue properties.
Resumo:
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis.
Resumo:
Airport system is complex. Passenger dynamics within it appear to be complicate as well. Passenger behaviours outside standard processes are regarded more significant in terms of public hazard and service rate issues. In this paper, we devised an individual agent decision model to simulate stochastic passenger behaviour in airport departure terminal. Bayesian networks are implemented into the decision making model to infer the probabilities that passengers choose to use any in-airport facilities. We aim to understand dynamics of the discretionary activities of passengers.