947 resultados para Nonnegative sine polynomial
Resumo:
Given the polynomials f, g ∈ Z[x] of degrees n, m, respectively, with n > m, three new, and easy to understand methods — along with the more efficient variants of the last two of them — are presented for the computation of their subresultant polynomial remainder sequence (prs). All three methods evaluate a single determinant (subresultant) of an appropriate sub-matrix of sylvester1, Sylvester’s widely known and used matrix of 1840 of dimension (m + n) × (m + n), in order to compute the correct sign of each polynomial in the sequence and — except for the second method — to force its coefficients to become subresultants. Of interest is the fact that only the first method uses pseudo remainders. The second method uses regular remainders and performs operations in Q[x], whereas the third one triangularizes sylvester2, Sylvester’s little known and hardly ever used matrix of 1853 of dimension 2n × 2n. All methods mentioned in this paper (along with their supporting functions) have been implemented in Sympy and can be downloaded from the link http://inf-server.inf.uth.gr/~akritas/publications/subresultants.py
Resumo:
2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.
Resumo:
Polynomial phase modulated (PPM) signals have been shown to provide improved error rate performance with respect to conventional modulation formats under additive white Gaussian noise and fading channels in single-input single-output (SISO) communication systems. In this dissertation, systems with two and four transmit antennas using PPM signals were presented. In both cases we employed full-rate space-time block codes in order to take advantage of the multipath channel. For two transmit antennas, we used the orthogonal space-time block code (OSTBC) proposed by Alamouti and performed symbol-wise decoding by estimating the phase coefficients of the PPM signal using three different methods: maximum-likelihood (ML), sub-optimal ML (S-ML) and the high-order ambiguity function (HAF). In the case of four transmit antennas, we used the full-rate quasi-OSTBC (QOSTBC) proposed by Jafarkhani. However, in order to ensure the best error rate performance, PPM signals were selected such as to maximize the QOSTBC’s minimum coding gain distance (CGD). Since this method does not always provide a unique solution, an additional criterion known as maximum channel interference coefficient (CIC) was proposed. Through Monte Carlo simulations it was shown that by using QOSTBCs along with the properly selected PPM constellations based on the CGD and CIC criteria, full diversity in flat fading channels and thus, low BER at high signal-to-noise ratios (SNR) can be ensured. Lastly, the performance of symbol-wise decoding for QOSTBCs was evaluated. In this case a quasi zero-forcing method was used to decouple the received signal and it was shown that although this technique reduces the decoding complexity of the system, there is a penalty to be paid in terms of error rate performance at high SNRs.
Resumo:
Recently, polynomial phase modulation (PPM) was shown to be a power- and bandwidth-efficient modulation format. These two characteristics are in high demand nowadays specially in mobile applications, where devices with size, weight, and power (SWaP) constraints are common. In this paper, we propose implementing a full-diversity quasiorthogonal space-time block code (QOSTBC) using polynomial phase signals as modulation format. QOSTBCs along with PPM are used in order to improve the power efficiency of communication systems with four transmit antennas. We obtain the optimal PPM constellations that ensure full diversity and maximize the QOSTBC's minimum coding gain distance. Simulation results show that by using QOSTBCs along with a properly selected PPM constellation, full diversity in flat fading channels and thus low BER at high signal-to-noise ratios (SNR) can be ensured. More importantly, it is also shown that QOSTBCs using PPM achieve a better error performance than those using conventional modulation formats.
Resumo:
Acknowledgement SN and SS gratefully acknowledge the financial support from Lloyd’s Register Foundation Centre during this work.
Resumo:
Spectral unmixing (SU) is a technique to characterize mixed pixels of the hyperspectral images measured by remote sensors. Most of the existing spectral unmixing algorithms are developed using the linear mixing models. Since the number of endmembers/materials present at each mixed pixel is normally scanty compared with the number of total endmembers (the dimension of spectral library), the problem becomes sparse. This thesis introduces sparse hyperspectral unmixing methods for the linear mixing model through two different scenarios. In the first scenario, the library of spectral signatures is assumed to be known and the main problem is to find the minimum number of endmembers under a reasonable small approximation error. Mathematically, the corresponding problem is called the $\ell_0$-norm problem which is NP-hard problem. Our main study for the first part of thesis is to find more accurate and reliable approximations of $\ell_0$-norm term and propose sparse unmixing methods via such approximations. The resulting methods are shown considerable improvements to reconstruct the fractional abundances of endmembers in comparison with state-of-the-art methods such as having lower reconstruction errors. In the second part of the thesis, the first scenario (i.e., dictionary-aided semiblind unmixing scheme) will be generalized as the blind unmixing scenario that the library of spectral signatures is also estimated. We apply the nonnegative matrix factorization (NMF) method for proposing new unmixing methods due to its noticeable supports such as considering the nonnegativity constraints of two decomposed matrices. Furthermore, we introduce new cost functions through some statistical and physical features of spectral signatures of materials (SSoM) and hyperspectral pixels such as the collaborative property of hyperspectral pixels and the mathematical representation of the concentrated energy of SSoM for the first few subbands. Finally, we introduce sparse unmixing methods for the blind scenario and evaluate the efficiency of the proposed methods via simulations over synthetic and real hyperspectral data sets. The results illustrate considerable enhancements to estimate the spectral library of materials and their fractional abundances such as smaller values of spectral angle distance (SAD) and abundance angle distance (AAD) as well.
Resumo:
Abstract not available
Resumo:
An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π(Q)=P. These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466, 1991) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of $$P$$P equals the nonnegative rank of its slack matrix S. Moreover, Yannakakis also shows that the nonnegative rank of S is at most 2c, where c is the complexity of any deterministic protocol computing S. In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized. In particular, we prove that the base-2 logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base-2 logarithm of the smallest size of an extended formulation of a polytope P equals the minimum complexity of a randomized communication protocol computing the slack matrix of P in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.
Resumo:
We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.
Resumo:
We consider the a priori error analysis of hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form under weak assumptions on the mesh design and the local finite element spaces employed. In particular, we prove a priori hp-error bounds for linear target functionals of the solution, on (possibly) anisotropic computational meshes with anisotropic tensor-product polynomial basis functions. The theoretical results are illustrated by a numerical experiment.
Resumo:
We consider the a posteriori error analysis and hp-adaptation strategies for hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes with anisotropically enriched elemental polynomial degrees. In particular, we exploit duality based hp-error estimates for linear target functionals of the solution and design and implement the corresponding adaptive algorithms to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement and isotropic and anisotropic polynomial degree enrichment. The superiority of the proposed algorithm in comparison with standard hp-isotropic mesh refinement algorithms and an h-anisotropic/p-isotropic adaptive procedure is illustrated by a series of numerical experiments.
Resumo:
In this paper, equivalence constants between various polynomial norms are calculated. As an application, we also obtain sharp values of the Hardy Littlewood constants for 2-homogeneous polynomials on l(p)(2) spaces, 2 < p <= infinity. We also provide lower estimates for the Hardy-Littlewood constants for polynomials of higher degrees.
Resumo:
We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a complex curve of genus g = 3 into SL(2, C), and also of the moduli space of twisted representations. The case of genus g = 1, 2 has already been done in [12]. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behaviour of the E-polynomial under fibrations.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model