821 resultados para Nonlinear optical polymers


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper numerically analyzes the performances of a 2R (reamplification and reshaping) regenerator based on a nonlinear optical loop mirror and a 3R (reamplification, reshaping, and retiming) regenerator using a nonlinearly enhanced amplitude modulator in 40-Gb/s standard single-mode fiber (SMF)-based optical networks with large amplifier spacing. The characteristics of one- (600 km of SMF) and two-step regeneration are examined and the feasibility of wavelength-division multiplexing operation is demonstrated. © 2005 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a simple method for passive nonlinear optical pulse shaping that utilizes pulse prechirping and nonlinear propagation in a normally dispersive nonlinear fiber to generate various temporal waveforms of practical interest from conventional laser pulses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optical conversion bandwidth for an all-optical modulation format converter, based on a semiconductor laser amplifier in a nonlinear optical loop mirror (SOA-NOLM), is investigated. 4 Â 10 Gbit/s channels are all- optically converted between both non-return-to-zero (NRZ) and return-to-zero (RZ) format to carrier- suppressed return-to-zero (CSRZ). WDM transmission of the converted signals over a 194 km fibre span is then demonstrated. The receiver sensitivity for the converted four wavelengths is measured and compared after transmission.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optical conversion bandwidth for an all-optical modulation format converter, based on a semiconductor laser amplifier in a nonlinear optical loop mirror (SOA-NOLM), is investigated. 4 Â 10 Gbit/s channels are all- optically converted between both non-return-to-zero (NRZ) and return-to-zero (RZ) format to carrier- suppressed return-to-zero (CSRZ). WDM transmission of the converted signals over a 194 km fibre span is then demonstrated. The receiver sensitivity for the converted four wavelengths is measured and compared after transmission.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optical conversion bandwidth for an all-optical modulation format converter, based on a semiconductor laser amplifier in a nonlinear optical loop mirror (SOA-NOLM), is investigated. 4×10 Gbit/s channels are all-optically converted between both non-return-to-zero (NRZ) and return-to-zero (RZ) format to carrier-suppressed return-to-zero (CSRZ). WDM transmission of the converted signals over a 194 km fibre span is then demonstrated. The receiver sensitivity for the converted four wavelengths is measured and compared after transmission. © 2014 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe the linear and nonlinear optical transfer characteristics of a multi-resonance device consisting of two optical ring resonators coupled one to the other and to an optical waveguide. The propagation effects displayed by the device are compared with those of a sequence of fundamental ring resonators coupled to a waveguide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking.  These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fiber amplifiers in 2000. Similaritons in fiber amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Continuous progress in optical communication technology and corresponding increasing data rates in core fiber communication systems are stimulated by the evergrowing capacity demand due to constantly emerging new bandwidth-hungry services like cloud computing, ultra-high-definition video streams, etc. This demand is pushing the required capacity of optical communication lines close to the theoretical limit of a standard single-mode fiber, which is imposed by Kerr nonlinearity [1–4]. In recent years, there have been extensive efforts in mitigating the detrimental impact of fiber nonlinearity on signal transmission, through various compensation techniques. However, there are still many challenges in applying these methods, because a majority of technologies utilized in the inherently nonlinear fiber communication systems had been originally developed for linear communication channels. Thereby, the application of ”linear techniques” in a fiber communication systems is inevitably limited by the nonlinear properties of the fiber medium. The quest for the optimal design of a nonlinear transmission channels, development of nonlinear communication technqiues and the usage of nonlinearity in a“constructive” way have occupied researchers for quite a long time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices.  One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction.  There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet.  These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects.  A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential.  In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides.  These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased.  A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies.  This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range.  Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The syntheses, properties and electronic structures of a series of porphyrin dimers connected by two-atom bridges were compared. The study found that an azo linker results in the most efficient electronic communication between the two porphyrin rings, and is the superior connector for dimers, trimers and oligomers in the design of nonlinear optical materials. This has implications for the design of molecular probes and sensors, photodynamic therapy, microfabrication, and three-dimensional optical data storage. The research led to the synthesis of a number of new porphyrin monomers and dimers, which were characterised using structural, spectroscopic and spectrometric techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738-1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (;.) of light ("small-particle limit"). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/lambda ratio. We have identified the "small-particle limit" in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/lambda ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cesium hydrogen l-malate monohydrate, CsH(C4H4O5)·H2O, is a new chiral open-framework semi-organic crystalline material with a second-harmonic generation efficiency one order of magnitude greater than KDP. Single crystals of this new material have been grown by the conventional slow cooling technique from aqueous solution. Grown crystals display both platy and prismatic morphologies depending on the imposed supersaturation. Hardness values measured using Vickers hardness indenter show considerable anisotropy. The resistivity behavior at room temperature and above, places the crystal between an ionic conductor and a dielectric. The single-crystal SHG efficiency estimated through Maker fringes experiment gives deff which is 4.24 times that of KDP. Single and multiple shot experiments performed on the grown crystals for the fundamental and second harmonic of pulsed Nd:YAG laser (1064 and 532 nm) show that it exhibits a high laser damage threshold which is a favorable property for nonlinear optical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The frequency and temperature dependences of the dielectric constant and the electrical conductivity of the transparent glasses in the composition Li2O-3B(2)O(3) were investigated in the 100 Hz-10 MHz frequency range. The dielectric constant and the loss in the low frequency regime were electrode material dependent. Dielectric and electrical relaxations were, respectively, analyzed using the Cole-Cole and electric modulus formalisms. The dielectric relaxation mechanism was discussed in the framework of electrode and charge carrier (hopping of the ions) related polarization using generalized Cole-Cole expression. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was 0.80 +/- 0.02 eV, which was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. Temperature dependent behavior of the frequency exponent (n) suggested that the correlated barrier hopping model was the most apposite to rationalize the electrical transport phenomenon in Li2O-3B(2)O(3) glasses. These glasses on heating at 933 K/10 h resulted in the known nonlinear optical phase LiB3O5.