940 resultados para Nonlinear dynamical systems
Resumo:
In the author's joint paper [HJS] with Jest and Struwe, we discuss asymtotic limits of a self-dual Ginzburg-Landau functional involving a section of a line bundle over a closed Riemann surface and a connection on this bundle. In this paper, the author generalizes the above results [HJS] to the case of bounded domains.
Resumo:
The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time.
Resumo:
I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.
Resumo:
Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.
Resumo:
We consider the two-dimensional Navier-Stokes equations with a time-delayed convective term and a forcing term which contains some hereditary features. Some results on existence and uniqueness of solutions are established. We discuss the asymptotic behaviour of solutions and we also show the exponential stability of stationary solutions.
Resumo:
In this paper we discuss the existence of alpha-Holder classical solutions for non-autonomous abstract partial neutral functional differential equations. An application is considered.
Resumo:
We prove two asymptotical estimates for minimizers of a Ginzburg-Landau functional of the form integral(Omega) [1/2 \del u\(2) + 1/4 epsilon(2) (1 - \u\(2))(2) W (x)] dx.
Resumo:
A combination of modelling and analysis techniques was used to design a six component force balance. The balance was designed specifically for the measurement of impulsive aerodynamic forces and moments characteristic of hypervelocity shock tunnel testing using the stress wave force measurement technique. Aerodynamic modelling was used to estimate the magnitude and distribution of forces and finite element modelling to determine the mechanical response of proposed balance designs. Simulation of balance performance was based on aerodynamic loads and mechanical responses using convolution techniques. Deconvolution was then used to assess balance performance and to guide further design modifications leading to the final balance design. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.