940 resultados para Non-human personhood
Resumo:
Humans’ perceived relationship to nature and non-human lifeforms is fundamental for sustainable development; different framings of nature – as commodity, as threat, as sacred etc. – imply different responses to future challenges. The body of research on nature repre-sentations in various symbolic contexts is growing, but the ways in which nature is framed by people in the everyday has received scant attention. This paper aims to contribute to our understanding of the framing of nature by studying how wild-boar hunting is depicted on YouTube. The qualitative frame analysis identified three interrelated frames depicting hunting as battle, as consumption, and as privilege, all of which constitute and are constituted by the underlying notion of human as superior to nature. It is suggested that these hegemonic nature frames suppress more constructive ways of framing the human-nature relationship, but also that the identification of such potential counter-hegemonic frames enables their discursive manifestation.
Resumo:
Comparative and evolutionary developmental analyses seek to discover the similarities and differences between humans and non-human species that illuminate both the evolutionary foundations of our nature that we share with other animals, and the distinctive characteristics that make human development unique. As our closest animal relatives, with whom we last shared common ancestry, non-human primates have beenparticularly important in this endeavour. Such studies that have focused on social learning, traditions, and culture have discovered much about the ‘how’ of social learning, concerned with key underlying processes such as imitation and emulation. One of the core discoveries is that the adaptive adjustment of social learning options to different contexts is not unique to human infants, therefore multiple new strands of research have begun to focus on more subtle questions about when, from whom, and why such learning occurs. Here we review illustrative studies on both human infants and young children and on non-human primates to identify the similarities shared more broadly across the primate order, and the apparent specialisms that distinguish human development. Adaptive biases in social learning discussed include those modulated by task comprehension, experience, conformity to majorities, and the age, skill, proficiency and familiarity of potential alternative cultural models.
Resumo:
This thesis investigates the morphological variations of fibular extremities in humans and non-human hominids using a 3D Geometric Morphometric approach. The study has three objectives: (1) to assess the shape, form, and size variations of fibular epiphyses within the human species, highlighting sexually dimorphic features; (2) to explore interpopulation variability of fibular extremities from the Upper Paleolithic to the 20th century, comparing subsistence, mobility, and lifestyles; and (3) to examine interspecific variations in fibular ends, testing potential associations with locomotor and positional behavior among extant hominid taxa. In terms of intraspecific variations, sex-related differences in fibular form and size were observed, suggesting distinct functional requirements for the lower limb between sexes. Interpopulation variations revealed a decline in activity level over time, influenced by terrain and footwear use. Hunter-gatherer groups exhibited greater joint mobility, loading, and range of motion compared to sedentary pre- and post-industrial populations. Interspecific variations demonstrated significant morphological differences among hominid taxa, indicating functional implications related to both phylogeny and specific loading patterns on the lower limb. The study identified features indicative of bipedalism in humans, as well as shared characteristics among non-human great apes. Furthermore, distinguishing features were found between Asian and African apes, along with unique morphological signals associated with distinct positional behavior in each hominid taxa. By comprehensively analyzing fibular morphology, this research sheds light on the importance of this bone in knee support, ankle stabilization, and overall locomotor function. The findings contribute to our understanding of the evolutionary and functional aspects of the fibula across human populations and non-human hominids throughout history.
Resumo:
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (Sao Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140).
Resumo:
Phosphorylation of the tumor suppressor p53 is generally thought to modify the properties of the protein in four of its five independent domains. We used synthetic peptides to directly study the effects of phosphorylation on the non-sequence-specific DNA binding and conformation of the C-terminal, basic domain. The peptides corresponded to amino acids 361-393 and were either nonphosphorylated or phosphorylated at the protein kinase C (PKC) site, Ser378, or the casein kinase II (CKII) site, Ser392, or bis-phosphorylated on both the PKC and the CKII sites. A fluorescence polarization analysis revealed that either the recombinant p53 protein or the synthetic peptides bound to two unrelated target DNA fragments. Phosphorylation of the peptide at the PKC or the CKII sites clearly decreased DNA binding, and addition of a second phosphate group almost completely abolished binding. Circular dichroism spectroscopy showed that the peptides assumed identical unordered structures in aqueous solutions. The unmodified peptide, unlike the Ser378 phosphorylated peptide, changed conformation in the presence of DNA. The inherent ability of the peptides to form an alpha-helix could be detected when circular dichroism and nuclear magnetic resonance spectra were: taken in trifluoroethanol-water mixtures. A single or double phosphorylation destabilized the helix around the phosphorylated Ser378 residue but stabilized the helix downstream in the sequence.
Resumo:
Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain-C-peptide-A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitutive pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.
Resumo:
Background/aim Regulation of apoptosis in non-alcoholic fatty liver disease (NAFLD) has been a theme of growing debate. Although no other study assessed the role of survivin in NAFLD, its expression has been reported in hepatic carcinogenesis because of other aetiological factors with relevant discrepancies. The aim of this study was to assess the pattern of survivin immunoexpression by tissue microarray along the whole spectrum of NAFLD, including non-alcoholic steatohepatitis (NASH)-related hepatocelular carcinoma (HCC). Methods Liver biopsies from 56 patients with NAFLD were evaluated: 18 with steatosis, 21 non-cirrhotic NASH, 10 NASH-related cirrhosis, seven NASH-related HCC, as compared with 71 HCC related to other causes and with 12 normal livers. Results Survivin immunoexpression in NAFLD was restricted to cytoplasm and was found to be progressively lower in advanced stages, including cirrhosis and HCC: steatosis vs NASH-related cirrhosis (P=0.0243); steatosis vs NASH-related HCC (P=0.0010); NASH vs NASH-related cirrhosis (P=0.0318); and NASH vs NASH-related HCC (P=0.0007), thus suggesting a deregulation of apoptosis from NAFLD towards HCC. Interestingly, survivin immunoreactivity in NASH-related HCC was also found to be significantly lower than in HCC related to other causes (P < 0.05). Remarkably, nuclear staining for survivin was not detected in any case of NAFLD, contrasting to its presence in all other cases of HCC. Conclusions Survivin immunoexpression in NASH-related HCC is herein originally found substantially different than in HCC related to other causes, thus requiring further studies to elucidate the role of survivin in human NAFLD progression.
Resumo:
T cell activation is a complex process involving many steps and the role played by the non-protein-coding RNAs (ncRNAs) in this phenomenon is still unclear. The non-coding T cells transcript (NTT) is differentially expressed during human T cells activation, but its function is unknown. Here, we detected a 426 m NTT transcript by RT-PCR using RNA of human lymphocytes activated with a synthetic peptide of HIV-1. After cloning, the sense and antisense 426 nt NTT transcripts were obtained by in vitro transcription and were sequenced. We found that both transcripts are highly structured and are able to activate PKR. A striking observation was that the antisense 426 nt NTT transcript is significantly more effective in activating PKR than the corresponding sense transcript. The transcription factor NF-kappa B is activated by PKR through phosphorylation and subsequent degradation of its inhibitor I-kappa B beta. We also found that the antisense 426 nt NTT transcript induces more efficiently the degradation Of I-kappa B beta than the sense transcript. Thus, this study suggests that the role played by NTT in the activation of lymphocytes can be mediated by PKR through NF-kappa B activation. However, the physiological significance of the activity of the antisense 426 nt NTT transcript remains unknown. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Common features such as elastic fibre destruction, mucoid accumulation, and smooth muscle cell apoptosis are co-localized in aneurysms of the ascending aorta of various aetiologies. Recent experimental studies reported an activation of TGF-beta in aneurysms related to Marfan (and Loeys-Dietz) syndrome. Here we investigate TGF-beta signalling in normal and pathological human ascending aortic wall in syndromic and non-syndromic aneurysmal disease. Aneurysmal ascending aortic specimens, classified according to aetiology: syndromic MFS (n = 15, including two mutations in TGFBR2), associated with BAV (n = 15) or degenerative forms (n = 19), were examined. We show that the amounts of TGF-beta 1 protein retained within and released by aneurysmal tissue were greater than for control aortic tissue, whatever the aetiology, contrasting with an unchanged TGF-beta 1 mRNA level. The increase in stored TGF-beta 1 was associated with enhanced LTBP-I protein and mRNA levels. These dysiregulations of the extracellular ligand are associated with higher phosphorylated Smad2 and Smad2 mRNA levels in the ascending aortic wall from all types of aneurysm. This activation correlated with the degree of elastic fibre fragmentation. Surprisingly, there was no consistent association between the nuclear location of pSmad2 and extracellular TGF-beta 1 and LTBP-I staining and between their respective mRNA expressions. In parallel, decorin. was focally increased in aneurysmal media, whereas biglycan was globally decreased in aneurysmal aortas. In conclusion, this study highlights independent dysregulations of TGF-beta retention and Smad2 signalling in syndromic and non-syndromic aneurysms of the ascending aorta. Copyright (C) 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
GH is being used by elite athletes to enhance sporting performance. To examine the hypothesis that exogenous 22-kDa recombinant human GH (rhGH) administration could be detected through suppression of non-22-kDa isoforms of GH, we studied seventeen aerobically trained males (age, 26.9 +/- 1.5 yr) randomized to rhGH or placebo treatment (0.15 IU/kg/day for 1 week). Subjects were studied at rest and in response to exercise (cycle-ergometry at 65% of maximal work capacity for 20 min). Serum was assayed for total GH (Pharmacia IRMA and pituitary GH), 22-kDa GH (2 different 2-site monoclonal immunoassays), non-22-kDa GH (22-kDa GH-exclusion assay), 20-kDa GH, and immunofunctional GH. In the study, 3 h after the last dose of rhGH, total and 22-kDa GH concentrations were elevated, reflecting exogenous 22-kDa GH. Non-22-kDa and 20-kDa GH levels were suppressed. Regression of non-22-kDa or 20-kDa GH against total or 22-kDa GH produced clear separation of treatment groups. In identical exercise studies repeated between 24 and 96 h after cessation of treatment, the magnitude of the responses of all GH isoforms was suppressed (P < 0.01), but the relative proportions were similar to those before treatment. We conclude: 1) supraphysiological doses of rhGH in trained adult males suppressed exercise-stimulated endogenous circulating isoforms of GH for up to 4 days; 2) the dearest separation of treatment groups required the simultaneous presence of high exogenous 22-kDa GH and suppressed 20-kDa or non-22-kDa GH concentrations; and 3) these methods may prove useful in detecting rhGH abuse in athletes.
Resumo:
This study was undertaken to assess associations between age, gender, cigarette smoke and non-workplace cadmium exposure, and liver pathology and inter-individual variation in cytochrome P450 (CYP) expression in human tissues. Autopsy specimens of twenty-eight Queensland residents whose ages ranged from 3 to 89 years were analyzed for the presence of nine CYP protein isoforms by immunoblotting. All subjects were Caucasians and their liver cadmium contents ranged from 0.11 to 3.95 kg/g wet weight, while their kidney cadmium contents were in the range of 2 to 63 mug/g wet weight. CYP1A2, CYP2A6, CYP2D6, CYP3A4, and CYP3A5 were detected in liver but not in kidney, and CYP1A1 and CYP1B1 were not found in liver or kidney. Lowered liver CYP2C8/19 protein contents were found to be associated with liver pathology. Importantly, we show elevated levels of CYP2C9 protein to be associated with cadmium accumulation in liver. No mechanism that explains this association is apparent, but there are two possibilities that require further study. One is that variation in CYP2C9 protein levels may be, in part, attributed to an individual's non-workplace exposure to cadmium, or an individual's CYP2C9 genotype may be a risk factor for cadmium accumulation. A positive correlation was found between liver CYP3A4 protein and subject age. Levels of liver CYPIA2 protein, but not other CYP forms, were increased in people more exposed to cigarette smoke, but there was no association between CYPIA2 protein and cadmium. CYP2A6 protein was found in all liver samples and CYP2A6 gene typing indicated the absence of CYP2A6 null allele (CYP2A6(D)) in this sample group, confirming very low prevalence of homozygous CYP2A6(D) in Caucasians. CYP2A6 gene types W/W, WIC, and CIC were not associated with variations in liver microsomal CYP2A6 protein. CYP2D6 protein was absent in all twenty-five kidney samples tested but was detectable in liver samples of all but two subjects, indicating the prevalence of the CYP2D6 null allele (CYP2D6(D)) in this sample group to be about 7%, typical of Caucasian populations. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Objectives: This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Methods: Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Results: Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Conclusions: Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Peroxisome proliferator-activated receptor beta (PPARbeta) is a member of the nuclear hormone receptor superfamily and is a ligand activated transcription factor. although the precise genes that it regulates and its physiological and pathophysiological role remain unclear. In view of the association of PPARbeta with colon cancer and increased mRNA levels of PPARbeta in colon tumours we sought in this study to examine the expression of PPARbeta in human breast epithelial cells of tumorigenic (MCF-7 and MDA-MB-231) and non-tumorigenic origin (MCF-10A). Using quantitative RT-PCR we measured PPARbeta mRNA levels in MCF-7. MDA-MB-231 and MCF-10A cells at various stages in culture. After serum-deprivation, MDA-MB-231 and MCF-10A cells had a 4.2- and 3.8-fold statistically greater expression of PPARbeta compared with MCF-7 cells. The tumorigenic cell lines also exhibited a significantly greater level of PPARbeta mRNA after serum deprivation compared with subconfluence whereas such an effect was not observed in non-tumorigenic MCF-10A cells. The expression of PPARbeta was inducible upon exposure to the PPARbeta ligand bezafibrate. Our results suggest that unlike colon cancer. PPARbeta overexpression is not an inherent property of breast cancer cell lines. However, the dynamic changes in PPARbeta mRNA expression and the ability of PPARbeta in the MCF-7 cells to respond to ligand indicates that PPARbeta may play a role in mammary gland carcinogenesis through activation of downstream genes via endogenous fatty acid ligands or exogenous agonists. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.