945 resultados para Non-Current Assets
Resumo:
AIMS: We sought to determine whether fasting or post-challenge glucose were associated with progression of coronary atherosclerosis in non-diabetic women. METHODS: We performed a post-hoc analysis of 132 non-diabetic women who underwent 75-g oral glucose tolerance testing. The primary outcome of interest was progression of atherosclerosis determined by baseline and follow-up coronary angiography, a mean of 3.1 +/- 0.9 years apart. We analysed the association of change in minimal vessel diameter (DeltaMD) by quartile of fasting and post-challenge glucose using mixed models that included adjustment for age, systolic blood pressure, total : high-density lipoprotein cholesterol ratio, current smoking, lipid-lowering and anti-hypertensive medication use and other covariates. RESULTS: At baseline, participants had a mean age of 65.7 +/- 6.7 years and a mean body mass index of 27.9 +/- 8.5 kg/m(2). Although there were no significant differences in atherosclerotic progression by fasting glucose category (P for trend across quartiles = 0.99), there was a significant inverse association between post-challenge glucose and DeltaMD (in mm) (Q1 : 0.01 +/- 0.03; Q2 : 0.08 +/- 0.03; Q3 : 0.13 +/- 0.03; Q4 : 0.11 +/- 0.03; P for trend = 0.02). CONCLUSIONS: In post-menopausal women without diabetes, post-challenge glucose predicts angiographic disease progression. These findings suggest that even modest post-challenge hyperglycaemia influences the pathogenesis of atherosclerotic progression.
Resumo:
A non-intrusive interferometric measurement technique has been successfully developed to measure fluid compressibility in both gas and liquid phases via refractive index (RI) changes. The technique, consisting of an unfocused laser beam impinging a glass channel, can be used to separate and quantify cell deflection, fluid flow rates, and pressure variations in microchannels. Currently in fields such as microfluidics, pressure and flow rate measurement devices are orders of magnitude larger than the channel cross-sections making direct pressure and fluid flow rate measurements impossible. Due to the non-intrusive nature of this technique, such measurements are now possible, opening the door for a myriad of new scientific research and experimentation. This technique, adapted from the concept of Micro Interferometric Backscatter Detection (MIBD), boasts the ability to provide comparable sensitivities in a variety of channel types and provides quantification capability not previously demonstrated in backscatter detection techniques. Measurement sensitivity depends heavily on experimental parameters such as beam impingement angle, fluid volume, photodetector sensitivity, and a channel’s dimensional tolerances. The current apparatus readily quantifies fluid RI changes of 10-5 refractive index units (RIU) corresponding to pressures of approximately 14 psi and 1 psi in water and air, respectively. MIBD reports detection capability as low as 10-9 RIU and the newly adapted technique has the potential to meet and exceed this limit providing quantification in the place of detection. Specific device sensitivities are discussed and suggestions are provided on how the technique may be refined to provide optimal quantification capabilities based on experimental conditions.
Resumo:
As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.
Resumo:
Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential [6] for highly innovative technological applications. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling) [7, 8], nanocoatings [9-13], and electrical circuits [14, 15]. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation [2-5], did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material.
Resumo:
To assess the effect of self-monitoring of blood glucose (SMBG) on glycaemic control in non-insulin treated patients with type 2 diabetes by means of a systematic review and meta-analysis.
Resumo:
Electrically induced reflexes can be used to investigate the physiology and pathophysiology of the trigeminal system in humans. Similarly, the assessment of the trigemino-cervical (TCR) and blink reflexes (BR) may provide a new diagnostic tool in horses. The aim of this study was to evoke nociceptive trigeminal reflexes and describe the electrophysiological characteristics in non-sedated horses. The infraorbital (ION) and supraorbital nerves (SON) were stimulated transcutaneously in 10 adult Warmblood horses in separate sessions using train-of-five electrical pulses. The current was increased gradually until the TCR threshold was found. The stimulus-response curve of the TCR was evaluated. At the same time as TCR, the BR response was also assessed. Surface electromyographic (EMG) responses were recorded from the orbicularis oculi, splenius and cleidomastoideus muscles. Latency, duration, amplitude of the reflexes and behavioural responses were analysed. Noxious electrical stimulation of the ION or SON evoked reflex EMG responses, with similar features regardless of the nerve that had been stimulated. Stimulations of increasing intensity elicited reflexes of increasing amplitude and decreasing latency, accompanied by stronger behavioural reactions, therefore confirming the nociceptive nature of the TCR. These findings provide a reference for the assessment of dysfunction of the equine trigeminal system.
Resumo:
Here, we review the effects of non-invasive brain stimulation such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies) fulfilling our search criteria. Activity of daily living measures such as the Barthel Index or, more specifically for neglect, the Catherine Bergego Scale were the outcome measure in three studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence. The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta-burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients.
Resumo:
Within the current context that favours the emergence of new diseases, syndromic surveillance (SyS) appears increasingly more relevant tool for the early detection of unexpected health events. The Triple-S project (Syndromic Surveillance Systems in Europe), co-financed by the European Commission, was launched in September 2010 for a three year period to promote both human and animal health SyS in European countries. Objectives of the project included performing an inventory of current and planned European animal health SyS systems and promoting knowledge transfer between SyS experts. This study presents and discusses the results of the Triple-S inventory of European veterinary SyS initiatives. European SyS systems were identified through an active process based on a questionnaire sent to animal health experts involved in SyS in Europe. Results were analyzed through a descriptive analysis and a multiple factor analysis (MFA) in order to establish a typology of the European SyS initiatives. Twenty seven European SyS systems were identified from twelve countries, at different levels of development, from project phase to active systems. Results of this inventory showed a real interest of European countries for SyS but also highlighted the novelty of this field. This survey highlighted the diversity of SyS systems in Europe in terms of objectives, population targeted, data providers, indicators monitored. For most SyS initiatives, statistical analysis of surveillance results was identified as a limitation in using the data. MFA results distinguished two types of systems. The first one belonged to the private sector, focused on companion animals and had reached a higher degree of achievement. The second one was based on mandatory collected data, targeted livestock species and is still in an early project phase. The exchange of knowledge between human and animal health sectors was considered useful to enhance SyS. In the same way that SyS is complementary to traditional surveillance, synergies between human and animal health SyS could be an added value, most notably to enhance timeliness, sensitivity and help interpreting non-specific signals.
Resumo:
This study aimed to characterize the nociceptive withdrawal reflex (NWR) and to define the nociceptive threshold in 25 healthy, non-medicated experimental sheep in standing posture. Electrical stimulation of the dorsal lateral digital nerves of the right thoracic and the pelvic limb was performed and surface-electromyography (EMG) from the deltoid (all animals) and the femoral biceps (18 animals) or the peroneus tertius muscles (7 animals) was recorded. The behavioural reaction following each stimulation was scored on a scale from 0 (no reaction) to 5 (strong whole body reaction). A train-of-five 1 ms constant-current pulse was used and current intensity was stepwise increased until NWR threshold intensity was reached. The NWR threshold intensity (It) was defined as the minimal stimulus intensity able to evoke a reflex with a minimal Root-Mean-Square amplitude (RMSA) of 20 μV, a minimal duration of 10 ms and a minimal reaction score of 1 (slight muscle contraction of the stimulated limb) within the time window of 20 to 130 ms post-stimulation. Based on this value, further stimulations were performed below (0.9It) and above threshold (1.5It and 2It). The stimulus-response curve was described. Data are reported as medians and interquartile ranges. At the deltoid muscle It was 4.4 mA (2.9–5.7) with an RMSA of 62 μV (30–102). At the biceps femoris muscle It was 7.0 mA (4.0–10.0) with an RMSA of 43 μV (34–50) and at the peroneus tertius muscle It was 3.4 mA (3.1–4.4) with an RMSA of 38 μV (32–46). Above threshold, RMSA was significantly increased at all muscles. Below threshold, RMSA was only significantly smaller than at It for the peroneus tertius muscle but not for the other muscles.
Resumo:
Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.
Resumo:
Purpose: In traditional Chinese medicine (TCM) as in other fields of complementary medicine, research does not necessarily follow the sequence from in vitro studies via phase I to phase IV clinical trials, but all steps are being investigated simultaneously. Here, we aimed to investigate which kinds of studies were interesting and relevant for practitioners. Methods: Thirty abstracts from articles on TCM published between April and June 2012 were randomly chosen, including 5 abstracts each of in vitro studies, animal studies, case reports or series, studies with healthy volunteers, trials with patients, or reviews and meta-analyses. Six TCM practitioners (2 female, 5 non-medical, average age 46 years, average practical TCM experience 9 years) rated 10 abstracts each on a 5 point Likert scale (1=very poor to 5=very good) regarding comprehensibility, interest, relevance to practice, information for patients, and promoting reputation of TCM. Average ratings for each group of abstracts were calculated. Results: Comprehensibility of the abstracts was generally rated as good. Case reports/series, studies in healthy volunteers and trials with patients were rated interesting by the practitioners (average rating = 3.7, 3.8 and 3.7, respectively). Relevance to practice was mediocre for all types (2.5 to 3.5). In vitro studies and reviews/meta-analyses were not rated useful as information for patients (2.0). Reviews/Meta-analyses were considered negative for the reputation of TCM (2.2). Conclusions: Practitioners of TCM find abstracts of study results generally comprehensible and interesting. Case reports/series were rated in a similar way as trials with patients. Although TCM is commonly taught by means of case reports, practitioners seemed to value clinical trials. Abstracts of reviews/meta-analyses were rated rather uninformative, which was possibly due to several inconclusive results and the lack of detailed information in these abstracts.
Resumo:
Home dream recall frequencies and nightmare frequencies show great inter-individual differences. Most of the studies trying to explain these differences, however, studied young participants, so these findings might not be true for persons older than 25 years. The present study investigated the relationship between dream recall, nightmare frequency, age, gender, sleep parameters, stress, and subjective health in a community-based sample (N = 455) with a mean age of about 55 years. Some of the factors that have been shown to be associated with dream recall and nightmare frequency were also associated with these variables in non-student sample like frequency of nocturnal awakenings, current stress, and tiredness during the day. We were not able to replicate the effect of sex-role orientation on dream recall and nightmare frequency, supporting the idea that age might mediate the effect of daytime variables on dream recall and nightmare frequency. As nightmare frequency was related to sleep quality, stress, health problems, and tiredness during the day, it would be desirable that clinicians include a question about nightmares in their anamneses.
Resumo:
Motivated by the reported dearth of debris discs around M stars, we use survival models to study the occurrence of planetesimal discs around them. These survival models describe a planetesimal disc with a small number of parameters, determine if it may survive a series of dynamical processes and compute the associated infrared excess. For the Wide-field Infrared Survey Explorer (WISE) satellite, we demonstrate that the dearth of debris discs around M stars may be attributed to the small semimajor axes generally probed if either: (1) the dust grains behave like blackbodies emitting at a peak wavelength coincident with the observed one; (2) or the grains are hotter than predicted by their blackbody temperatures and emit at peak wavelengths that are shorter than the observed one. At these small distances from the M star, planetesimals are unlikely to survive or persist for time-scales of 300 Myr or longer if the disc is too massive. Conversely, our survival models allow for the existence of a large population of low-mass debris discs that are too faint to be detected with current instruments. We gain further confidence in our interpretation by demonstrating the ability to compute infrared excesses for Sun-like stars that are broadly consistent with reported values in the literature. However, our interpretation becomes less clear and large infrared excesses are allowed if only one of these scenarios holds: (3) the dust grains are hotter than blackbody and predominantly emit at the observed wavelength; (4) or are blackbody in nature and emit at peak wavelengths longer than the observed one. Both scenarios imply that the parent planetesimals reside at larger distances from the star than inferred if the dust grains behaved like blackbodies. In all scenarios, we show that the infrared excesses detected at 22 μm (via WISE) and 70 μm (via Spitzer) from AU Mic are easily reconciled with its young age (12 Myr). Conversely, the existence of the old debris disc (2–8 Gyr) from GJ 581 is due to the large semimajor axes probed by the Herschel PACS instrument. We elucidate the conditions under which stellar wind drag may be neglected when considering dust populations around M stars. The WISE satellite should be capable of detecting debris discs around young M stars with ages ∼10 Myr.
Resumo:
We construct the theory of dissipative hydrodynamics of uncharged fluids living on embedded space-time surfaces to first order in a derivative expansion in the case of codimension-1 surfaces (including fluid membranes) and the theory of non-dissipative hydrodynamics to second order in a derivative expansion in the case of codimension higher than one under the assumption of no angular momenta in transverse directions to the surface. This construction includes the elastic degrees of freedom, and hence the corresponding transport coefficients, that take into account transverse fluctuations of the geometry where the fluid lives. Requiring the second law of thermodynamics to be satisfied leads us to conclude that in the case of codimension-1 surfaces the stress-energy tensor is characterized by 2 hydrodynamic and 1 elastic independent transport coefficient to first order in the expansion while for codimension higher than one, and for non-dissipative flows, the stress-energy tensor is characterized by 7 hydrodynamic and 3 elastic independent transport coefficients to second order in the expansion. Furthermore, the constraints imposed between the stress-energy tensor, the bending moment and the entropy current of the fluid by these extra non-dissipative contributions are fully captured by equilibrium partition functions. This analysis constrains the Young modulus which can be measured from gravity by elastically perturbing black branes.
Resumo:
Aim: A major depressive episode is still a frequently discussed risk factor of suicidal behaviour. However, current studies suggest that depression is predictive of suicidal ideas but much less of suicidal act (Nock et al., 2009). This implies that suicidal behaviour should not only be seen as a symptom of a depressive disorder, but should be understood as an independent behaviour, which must be examined separately. The present qualitative study focuses on typical Plans and motives of suicide attempters compared to non-suicidal depressive individuals.Methods: Plan Analysis (Caspar, 2007), a clinical case conceptualization approach was used to analyze the instrumental relations between participants' behaviours and the hypothetical Plans and motives "behind" this behaviour. Video taped narrative interviews of 17 suicide attempters and intake interviews of 17 non‐suicidal depressive patients were investigated with the Plan Analysis procedure and a Plan structure was developed for each participant. These were used for establishing a prototypical Plan structure for each clinical group.Results: Results indicate that suicidal behaviour serves various Plans and motives only found in suicide attempters. Furthermore depressive patients pursue interpersonal control strategies which may serve as a protective factor for not evolving suicidal behaviour.Discussion. Findings are discussed with respect to current theoretical models of suicidality as well as implications for suicide prevention.