326 resultados para Niemi, Marjaana
Resumo:
With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.
Resumo:
Phosphorylation is thought to be an essential first step in the prompt deactivation of photoexcited rhodopsin. In vitro, the phosphorylation can be catalyzed either by rhodopsin kinase (RK) or by protein kinase C (PKC). To investigate the specific role of RK, we inactivated both alleles of the RK gene in mice. This eliminated the light-dependent phosphorylation of rhodopsin and caused the single-photon response to become larger and longer lasting than normal. These results demonstrate that RK is required for normal rhodopsin deactivation. When the photon responses of RK−/− rods did finally turn off, they did so abruptly and stochastically, revealing a first-order backup mechanism for rhodopsin deactivation. The rod outer segments of RK−/− mice raised in 12-hr cyclic illumination were 50% shorter than those of normal (RK+/+) rods or rods from RK−/− mice raised in constant darkness. One day of constant light caused the rods in the RK−/− mouse retina to undergo apoptotic degeneration. Mice lacking RK provide a valuable model for the study of Oguchi disease, a human RK deficiency that causes congenital stationary night blindness.
Resumo:
Heme oxygenase-1 (HO-1) is an enzyme induced by hypoxia and reperfusion injury, and is associated with organ dysfunction in critically ill patients. Patients resuscitated from out-of-hospital cardiac arrest (OHCA) are subjected to hypoxemia, brain injury, and organ dysfunction. Accordingly, we studied HO-1 among these patients. A total of 143 OHCA patients resuscitated from a shockable initial rhythm and admitted to an ICU were included, with plasma HO-1 measured at ICU admission and at 24 h. We analyzed the associations between plasma HO-1 and time to return of spontaneous circulation (ROSC), 90-day mortality, and 12-month Cerebral Performance Category (CPC). HO-1 plasma concentrations were higher after OHCA compared with controls. HO-1 concentrations at admission and on day 1 associated with ROSC (P = 0.002 to P = 0.003). Admission and day 1 HO-1 plasma concentrations were higher in 90-day non-survivors than in survivors (P = 0.017, 0.026). In addition, poor neurological outcome (CPC 3-5) was associated with higher HO-1 plasma levels at admission (P = 0.024). Admission plasma HO-1 levels had an AUC of 0.623 to predict 90-day mortality and an AUC of 0.611 to predict CPC 3 to 5. In conclusion, we found that higher HO-1 plasma levels are associated with longer ROSC and poor long-term outcome.
Resumo:
AIM To assess whether the established cardiovascular biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP) provides prognostic information in patients with out-of-hospital cardiac arrest due to ventricular tachycardia or fibrillation (OHCA-VT/VF). METHODS We measured NT-proBNP levels in 155 patients with OHCA-VT/VF enrolled into a prospective multicenter observational study in 21 ICUs in Finland. Blood samples were drawn <6h of OHCA-VT/VF and later after 24h, 48h, and 96h. The end-points were mortality and neurological outcome classified according to Cerebral Performance Category (CPC) after one year. NT-proBNP levels were compared to high-sensitivity troponin T (hs-TnT) levels and established risk scores. RESULTS NT-proBNP levels were higher in non-survivors compared to survivors on study inclusion (median 1003 [quartile (Q) 1-3 502-2457] vs. 527 [179-1284]ng/L, p=0.001) and after 24h (1913 [1012-4573] vs. 1080 [519-2210]ng/L, p<0.001). NT-proBNP levels increased from baseline to 96h after ICU admission (p<0.001). NT-proBNP levels were significantly correlated to hs-TnT levels after 24h (rho=0.27, p=0.001), but not to hs-TnT levels on study inclusion (rho=0.05, p=0.67). NT-proBNP levels at all time points were associated with clinical outcome, but only NT-proBNP levels after 24h predicted mortality and poor neurological outcome, defined as CPC 3-5, in models that adjusted for SAPS II and SOFA scores. hs-TnT levels did not add prognostic information to NT-proBNP measurements alone. CONCLUSION NT-proBNP levels at 24h improved risk assessment for poor outcome after one year on top of established risk indices, while hs-TnT measurements did not further add to risk prediction.
Resumo:
THE AIM OF THE STUDY There are limited data on blood pressure targets and vasopressor use following cardiac arrest. We hypothesized that hypotension and high vasopressor load are associated with poor neurological outcome following out-of-hospital cardiac arrest (OHCA). METHODS We included 412 patients with OHCA included in FINNRESUSCI study conducted between 2010 and 2011. Hemodynamic data and vasopressor doses were collected electronically in one, two or five minute intervals. We evaluated thresholds for time-weighted (TW) mean arterial pressure (MAP) and outcome by receiver operating characteristic (ROC) curve analysis, and used multivariable analysis adjusting for co-morbidities, factors at resuscitation, an illness severity score, TW MAP and total vasopressor load (VL) to test associations with one-year neurologic outcome, dichotomized into either good (1-2) or poor (3-5) according to the cerebral performance category scale. RESULTS Of 412 patients, 169 patients had good and 243 patients had poor one-year outcomes. The lowest MAP during the first six hours was 58 (inter-quartile range [IQR] 56-61) mmHg in those with a poor outcome and 61 (59-63) mmHg in those with a good outcome (p<0.01), and lowest MAP was independently associated with poor outcome (OR 1.02 per mmHg, 95% CI 1.00-1.04, p=0.03). During the first 48h the median (IQR) of the TW mean MAP was 80 (78-82) mmHg in patients with poor, and 82 (81-83) mmHg in those with good outcomes (p=0.03) but in multivariable analysis TWA MAP was not associated with outcome. Vasopressor load did not predict one-year neurologic outcome. CONCLUSIONS Hypotension occurring during the first six hours after cardiac arrest is an independent predictor of poor one-year neurologic outcome. High vasopressor load was not associated with poor outcome and further randomized trials are needed to define optimal MAP targets in OHCA patients.
Resumo:
Dissolution of non-aqueous phase liquids (NAPLs) or gases into groundwater is a key process, both for contamination problems originating from organic liquid sources, and for dissolution trapping in geological storage of CO2. Dissolution in natural systems typically will involve both high and low NAPL saturations and a wide range of pore water flow velocities within the same source zone for dissolution to groundwater. To correctly predict dissolution in such complex systems and as the NAPL saturations change over time, models must be capable of predicting dissolution under a range of saturations and flow conditions. To provide data to test and validate such models, an experiment was conducted in a two-dimensional sand tank, where the dissolution of a spatially variable, 5x5 cm**2 DNAPL tetrachloroethene source was carefully measured using x-ray attenuation techniques at a resolution of 0.2x0.2 cm**2. By continuously measuring the NAPL saturations, the temporal evolution of DNAPL mass loss by dissolution to groundwater could be measured at each pixel. Next, a general dissolution and solute transport code was written and several published rate-limited (RL) dissolution models and a local equilibrium (LE) approach were tested against the experimental data. It was found that none of the models could adequately predict the observed dissolution pattern, particularly in the zones of higher NAPL saturation. Combining these models with a model for NAPL pool dissolution produced qualitatively better agreement with experimental data, but the total matching error was not significantly improved. A sensitivity study of commonly used fitting parameters further showed that several combinations of these parameters could produce equally good fits to the experimental observations. The results indicate that common empirical model formulations for RL dissolution may be inadequate in complex, variable saturation NAPL source zones, and that further model developments and testing is desirable.
Resumo:
Participation usually sets off from the bottom up, taking the form of more or less enduring forms of collective action with varying degrees of infl uence. However, a number of projects have been launched by political institutions in the last decades with a view to engaging citizens in public affairs and developing their democratic habits, as well as those of the administration. This paper analyses the political qualifying capacity of the said projects, i.e. whether participating in them qualifi es individuals to behave as active citizens; whether these projects foster greater orientation towards public matters, intensify (or create) political will, and provide the necessary skills and expertise to master this will. To answer these questions, data from the comparative analysis of fi ve participatory projects in France and Spain are used, shedding light on which features of these participatory projects contribute to the formation of political subjects and in which way. Finally, in order to better understand this formative dimension, the formative capacity of institutional projects is compared with the formative dimension of other forms of participation spontaneously developed by citizens.