815 resultados para Nicholas of Cusa
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.
Resumo:
Head motion (HM) is a well known confound in analyses of functional MRI (fMRI) data. Neuroimaging researchers therefore typically treat HM as a nuisance covariate in their analyses. Even so, it is possible that HM shares a common genetic influence with the trait of interest. Here we investigate the extent to which this relationship is due to shared genetic factors, using HM extracted from resting-state fMRI and maternal and self report measures of Inattention and Hyperactivity-Impulsivity from the Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour (SWAN) scales. Our sample consisted of healthy young adult twins (N = 627 (63% females) including 95 MZ and 144 DZ twin pairs, mean age 22, who had mother-reported SWAN; N = 725 (58% females) including 101 MZ and 156 DZ pairs, mean age 25, with self reported SWAN). This design enabled us to distinguish genetic from environmental factors in the association between head movement and ADHD scales. HM was moderately correlated with maternal reports of Inattention (r = 0.17, p-value = 7.4E-5) and Hyperactivity-Impulsivity (r = 0.16, p-value = 2.9E-4), and these associations were mainly due to pleiotropic genetic factors with genetic correlations [95% CIs] of rg = 0.24 [0.02, 0.43] and rg = 0.23 [0.07, 0.39]. Correlations between self-reports and HM were not significant, due largely to increased measurement error. These results indicate that treating HM as a nuisance covariate in neuroimaging studies of ADHD will likely reduce power to detect between-group effects, as the implicit assumption of independence between HM and Inattention or Hyperactivity-Impulsivity is not warranted. The implications of this finding are problematic for fMRI studies of ADHD, as failing to apply HM correction is known to increase the likelihood of false positives. We discuss two ways to circumvent this problem: censoring the motion contaminated frames of the RS-fMRI scan or explicitly modeling the relationship between HM and Inattention or Hyperactivity-Impulsivity
Resumo:
- Objective To compare health service cost and length of stay between a traditional and an accelerated diagnostic approach to assess acute coronary syndromes (ACS) among patients who presented to the emergency department (ED) of a large tertiary hospital in Australia. - Design, setting and participants This historically controlled study analysed data collected from two independent patient cohorts presenting to the ED with potential ACS. The first cohort of 938 patients was recruited in 2008–2010, and these patients were assessed using the traditional diagnostic approach detailed in the national guideline. The second cohort of 921 patients was recruited in 2011–2013 and was assessed with the accelerated diagnostic approach named the Brisbane protocol. The Brisbane protocol applied early serial troponin testing for patients at 0 and 2 h after presentation to ED, in comparison with 0 and 6 h testing in traditional assessment process. The Brisbane protocol also defined a low-risk group of patients in whom no objective testing was performed. A decision tree model was used to compare the expected cost and length of stay in hospital between two approaches. Probabilistic sensitivity analysis was used to account for model uncertainty. - Results Compared with the traditional diagnostic approach, the Brisbane protocol was associated with reduced expected cost of $1229 (95% CI −$1266 to $5122) and reduced expected length of stay of 26 h (95% CI −14 to 136 h). The Brisbane protocol allowed physicians to discharge a higher proportion of low-risk and intermediate-risk patients from ED within 4 h (72% vs 51%). Results from sensitivity analysis suggested the Brisbane protocol had a high chance of being cost-saving and time-saving. - Conclusions This study provides some evidence of cost savings from a decision to adopt the Brisbane protocol. Benefits would arise for the hospital and for patients and their families.
Resumo:
An application that translates raw thermal melt curve data into more easily assimilated knowledge is described. This program, called ‘Meltdown’, performs a number of data remediation steps before classifying melt curves and estimating melting temperatures. The final output is a report that summarizes the results of a differential scanning fluorimetry experiment. Meltdown uses a Bayesian classification scheme, enabling reproducible identification of various trends commonly found in DSF datasets. The goal of Meltdown is not to replace human analysis of the raw data, but to provide a sensible interpretation of the data to make this useful experimental technique accessible to naïve users, as well as providing a starting point for detailed analyses by more experienced users.
Resumo:
Background The Global Burden of Diseases (GBD), Injuries, and Risk Factors study used the disability-adjusted life year (DALY) to quantify the burden of diseases, injuries, and risk factors. This paper provides an overview of injury estimates from the 2013 update of GBD, with detailed information on incidence, mortality, DALYs and rates of change from 1990 to 2013 for 26 causes of injury, globally, by region and by country. Methods Injury mortality was estimated using the extensive GBD mortality database, corrections for ill-defined cause of death and the cause of death ensemble modelling tool. Morbidity estimation was based on inpatient and outpatient data sets, 26 cause-of-injury and 47 nature-of-injury categories, and seven follow-up studies with patient-reported long-term outcome measures. Results In 2013, 973 million (uncertainty interval (UI) 942 to 993) people sustained injuries that warranted some type of healthcare and 4.8 million (UI 4.5 to 5.1) people died from injuries. Between 1990 and 2013 the global age-standardised injury DALY rate decreased by 31% (UI 26% to 35%). The rate of decline in DALY rates was significant for 22 cause-of-injury categories, including all the major injuries. Conclusions Injuries continue to be an important cause of morbidity and mortality in the developed and developing world. The decline in rates for almost all injuries is so prominent that it warrants a general statement that the world is becoming a safer place to live in. However, the patterns vary widely by cause, age, sex, region and time and there are still large improvements that need to be made.
Resumo:
Background The Researching Effective Approaches to Cleaning in Hospitals (REACH) study will generate evidence about the effectiveness and cost-effectiveness of a novel cleaning initiative that aims to improve the environmental cleanliness of hospitals. The initiative is an environmental cleaning bundle, with five interdependent, evidence-based components (training, technique, product, audit and communication) implemented with environmental services staff to enhance hospital cleaning practices. Methods/design The REACH study will use a stepped-wedge randomised controlled design to test the study intervention, an environmental cleaning bundle, in 11 Australian hospitals. All trial hospitals will receive the intervention and act as their own control, with analysis undertaken of the change within each hospital based on data collected in the control and intervention periods. Each site will be randomised to one of the 11 intervention timings with staggered commencement dates in 2016 and an intervention period between 20 and 50 weeks. All sites complete the trial at the same time in 2017. The inclusion criteria allow for a purposive sample of both public and private hospitals that have higher-risk patient populations for healthcare-associated infections (HAIs). The primary outcome (objective one) is the monthly number of Staphylococcus aureus bacteraemias (SABs), Clostridium difficile infections (CDIs) and vancomycin resistant enterococci (VRE) infections, per 10,000 bed days. Secondary outcomes for objective one include the thoroughness of hospital cleaning assessed using fluorescent marker technology, the bio-burden of frequent touch surfaces post cleaning and changes in staff knowledge and attitudes about environmental cleaning. A cost-effectiveness analysis will determine the second key outcome (objective two): the incremental cost-effectiveness ratio from implementation of the cleaning bundle. The study uses the integrated Promoting Action on Research Implementation in Health Services (iPARIHS) framework to support the tailored implementation of the environmental cleaning bundle in each hospital. Discussion Evidence from the REACH trial will contribute to future policy and practice guidelines about hospital environmental cleaning. It will be used by healthcare leaders and clinicians to inform decision-making and implementation of best-practice infection prevention strategies to reduce HAIs in hospitals. Trial registration Australia New Zealand Clinical Trial Registry ACTRN12615000325505
Resumo:
Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA−). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.
Resumo:
The brain's functional network exhibits many features facilitating functional specialization, integration, and robustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world, modular, and "rich-club" properties, with deviations reported in many common neuropathological conditions. Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient (γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 23±2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics were moderately influenced by genetic factors h2 (γ=47-59%, Q=38-59%, ϕnorm=0-29%, λ=52-64%, σ=51-59%) at lower connection densities (≤15%), and when global signal regression was implemented, heritability estimates decreased substantially h2 (γ=0-26%, Q=0-28%, ϕnorm=0%, λ=23-30%, σ=0-27%). Distinct network features were phenotypically correlated (|r|=0.15-0.81), and γ, Q, and λ were found to be influenced by overlapping genetic factors. Our findings suggest that these metrics may be potential endophenotypes for psychiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with respect to methodological choices.
Resumo:
The aim of this paper is to assess the heritability of cerebral cortex, based on measurements of grey matter (GM) thickness derived from structural MR images (sMRI). With data acquired from a large twin cohort (328 subjects), an automated method was used to estimate the cortical thickness, and EM-ICP surface registration algorithm was used to establish the correspondence of cortex across the population. An ACE model was then employed to compute the heritability of cortical thickness. Heritable cortical thickness measures various cortical regions, especially in frontal and parietal lobes, such as bilateral postcentral gyri, superior occipital gyri, superior parietal gyri, precuneus, the orbital part of the right frontal gyrus, right medial superior frontal gyrus, right middle occipital gyrus, right paracentral lobule, left precentral gyrus, and left dorsolateral superior frontal gyrus.
Genetic analysis of structural brain connectivity using DICCCOL models of diffusion MRI in 522 twins
Resumo:
Genetic and environmental factors affect white matter connectivity in the normal brain, and they also influence diseases in which brain connectivity is altered. Little is known about genetic influences on brain connectivity, despite wide variations in the brain's neural pathways. Here we applied the 'DICCCOL' framework to analyze structural connectivity, in 261 twin pairs (522 participants, mean age: 21.8 y ± 2.7SD). We encoded connectivity patterns by projecting the white matter (WM) bundles of all 'DICCCOLs' as a tracemap (TM). Next we fitted an A/C/E structural equation model to estimate additive genetic (A), common environmental (C), and unique environmental/error (E) components of the observed variations in brain connectivity. We found 44 'heritable DICCCOLs' whose connectivity was genetically influenced (α2>1%); half of them showed significant heritability (α2>20%). Our analysis of genetic influences on WM structural connectivity suggests high heritability for some WM projection patterns, yielding new targets for genome-wide association studies.
Resumo:
Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10-30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future.
Resumo:
Despite the potential harm to patients (and others) and the financial cost of providing futile treatment at the end of life, this practice occurs. This article reports on empirical research undertaken in Queensland that explores doctors’ perceptions about the law that governs futile treatment at the end of life, and the role it plays in medical practice. The findings reveal that doctors have poor knowledge of their legal obligations and powers when making decisions about withholding or withdrawing futile treatment at the end of life; their attitudes towards the law were largely negative; and the law affected their clinical practice and had or would cause them to provide futile treatment.
Resumo:
Objective(s) To describe how doctors define and use the terms “futility” and “futile treatment” in end-of-life care. Design, Setting, Participants A qualitative study using semi-structured interviews with 96 doctors across a range of specialties who treat adults at the end of life. Doctors were recruited from three large Australian teaching hospitals and were interviewed from May to July 2013. Results Doctors’ conceptions of futility focused on the quality and chance of patient benefit. Aspects of benefit included physiological effect, weighing benefits and burdens, and quantity and quality of life. Quality and length of life were linked, but many doctors discussed instances when benefit was determined by quality of life alone. Most doctors described the assessment of chance of success in achieving patient benefit as a subjective exercise. Despite a broad conceptual consensus about what futility means, doctors noted variability in how the concept was applied in clinical decision-making. Over half the doctors also identified treatment that is futile but nevertheless justified, such as short-term treatment as part of supporting the family of a dying person. Conclusions There is an overwhelming preference for a qualitative approach to assessing futility, which brings with it variation in clinical decision-making. “Patient benefit” is at the heart of doctors’ definitions of futility. Determining patient benefit requires discussions with patients and families about their values and goals as well as the burdens and benefits of further treatment.
Resumo:
Objective: To identify key stakeholder preferences and priorities when considering a national healthcare-associated infection (HAI) surveillance programme through the use of a discrete choice experiment (DCE). Setting: Australia does not have a national HAI surveillance programme. An online web-based DCE was developed and made available to participants in Australia. Participants: A sample of 184 purposively selected healthcare workers based on their senior leadership role in infection prevention in Australia. Primary and secondary outcomes: A DCE requiring respondents to select 1 HAI surveillance programme over another based on 5 different characteristics (or attributes) in repeated hypothetical scenarios. Data were analysed using a mixed logit model to evaluate preferences and identify the relative importance of each attribute. Results: A total of 122 participants completed the survey (response rate 66%) over a 5-week period. Excluding 22 who mismatched a duplicate choice scenario, analysis was conducted on 100 responses. The key findings included: 72% of stakeholders exhibited a preference for a surveillance programme with continuous mandatory core components (mean coefficient 0.640 (p<0.01)), 65% for a standard surveillance protocol where patient-level data are collected on infected and non-infected patients (mean coefficient 0.641 (p<0.01)), and 92% for hospital-level data that are publicly reported on a website and not associated with financial penalties (mean coefficient 1.663 (p<0.01)). Conclusions: The use of the DCE has provided a unique insight to key stakeholder priorities when considering a national HAI surveillance programme. The application of a DCE offers a meaningful method to explore and quantify preferences in this setting.