989 resultados para Network tariffs allocation
Resumo:
Two-part tariffs, when used at the retail level, increase efficiency by lowering the price of marginal units. The same potential for higher efficiency exists for two-part tariffs at wholesale level for a given market structure, but the fixed part of the wholesale tariff can negatively affect the latter. In a simulated competition model of next-generation telecommunications access networks that has been calibrated with engineering cost data, we show that the latter effects strongly outweigh the former. That is, substituting a cost-based linear wholesale access tariff with revenue-equivalent two-part tariffs reduces the number of access seekers and therefore leads to higher prices and lower welfare and consumer surplus.
Resumo:
We show that the waterbed effect, i.e. the pass-through of a change in one price of a firm to its other prices, is much stronger if the latter include subscription rather than only usage fees. In particular, in mobile network competition with a fixed number of customers, the waterbed effect is full under two-part tariffs, while it is only partial under linear tariffs.
Resumo:
Thesis submitted in fulfilment of the requirements for the Degree of Master of Science in Computer Science
Resumo:
This paper proposes to quantify the effect of social tariffs (ST) in the Portuguese water and waste sector (WWS). It calculates the amount of subsidy implicit in ST schemes, characterising the existing tariffs in 2011 and producing a synthetic tariff scene where the regulator’s recommendation is respected. This is the first time such an exercise is undertaken and it is very relevant in a context of deep economic crisis. Results suggest that there are fewer beneficiaries than what income eligibility criteria would imply and that putting the regulator’s recommendation in practice would considerably raise subsidy amounts, potentially leading to a severe increase in non-subsidised user tariffs to allow for break-even.
Resumo:
The primary purpose of this research is to examine the feasibility of expanding Quinta dos Açores retailer network in Lisbon starting from 2015 onwards. A time series model was developed to estimate the company’s future production and sales. A Discounted Cash Flow analysis was also conducted to determine the profitability of this expansion opportunity. Our findings reveal that Quinta dos Açores will face negative results in the first two years of the expansion strategy, but the overall opportunity presents a net positive result of almost three million euros.
Resumo:
Following the Introduction, which surveys existing literature on the technology advances and regulation in telecommunications and on two-sided markets, we address specific issues on the industries of the New Economy, featured by the existence of network effects. We seek to explore how each one of these industries work, identify potential market failures and find new solutions at the economic regulation level promoting social welfare. In Chapter 1 we analyze a regulatory issue on access prices and investments in the telecommunications market. The existing literature on access prices and investment has pointed out that networks underinvest under a regime of mandatory access provision with a fixed access price per end-user. We propose a new access pricing rule, the indexation approach, i.e., the access price, per end-user, that network i pays to network j is function of the investment levels set by both networks. We show that the indexation can enhance economic efficiency beyond what is achieved with a fixed access price. In particular, access price indexation can simultaneously induce lower retail prices and higher investment and social welfare as compared to a fixed access pricing or a regulatory holidays regime. Furthermore, we provide sufficient conditions under which the indexation can implement the socially optimal investment or the Ramsey solution, which would be impossible to obtain under fixed access pricing. Our results contradict the notion that investment efficiency must be sacrificed for gains in pricing efficiency. In Chapter 2 we investigate the effect of regulations that limit advertising airtime on advertising quality and on social welfare. We show, first, that advertising time regulation may reduce the average quality of advertising broadcast on TV networks. Second, an advertising cap may reduce media platforms and firms' profits, while the net effect on viewers (subscribers) welfare is ambiguous because the ad quality reduction resulting from a regulatory cap o¤sets the subscribers direct gain from watching fewer ads. We find that if subscribers are sufficiently sensitive to ad quality, i.e., the ad quality reduction outweighs the direct effect of the cap, a cap may reduce social welfare. The welfare results suggest that a regulatory authority that is trying to increase welfare via regulation of the volume of advertising on TV might necessitate to also regulate advertising quality or, if regulating quality proves impractical, take the effect of advertising quality into consideration. 3 In Chapter 3 we investigate the rules that govern Electronic Payment Networks (EPNs). In EPNs the No-Surcharge Rule (NSR) requires that merchants charge at most the same amount for a payment card transaction as for cash. In this chapter, we analyze a three- party model (consumers, merchants, and a proprietary EPN) with endogenous transaction volumes and heterogenous merchants' transactional benefits of accepting cards to assess the welfare impacts of the NSR. We show that, if merchants are local monopolists and the network externalities from merchants to cardholders are sufficiently strong, with the exception of the EPN, all agents will be worse o¤ with the NSR, and therefore the NSR is socially undesirable. The positive role of the NSR in terms of improvement of retail price efficiency for cardholders is also highlighted.
Resumo:
Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.
Resumo:
The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.
Resumo:
Dispersion of returns has gained a lot of attention as a measure to distinguish good and bad investment opportunities time. In the following dissertation, the cross-sectional returns volatility is analyzed over a fifteen year period across the S&P100 Index composition. The main inference drawn from the data sample is that the canonical measure of dispersion is highly macro-risk driven and therefore more biased towards returns volatility rather than its correlation component.
Resumo:
There are few assessments of lifetime dry matter production for tropical trees. However, several studies, have been carried out for palms. This study measures dry matter production for Jessenia bataua,a useful palm common in many areas of the Amazon Valley. Palms In the Ducke Forest Reserve Of INPA were studied. Approximately 34% of total aboveground dry matter production in this palm was, alllocated to reproductive effort, eg., the production of in florescences and fruits. The meaning of this percentage, to discussed, relative to percentages identified in other Neotropical palms.
Resumo:
telligence applications for the banking industry. Searches were performed in relevant journals resulting in 219 articles published between 2002 and 2013. To analyze such a large number of manuscripts, text mining techniques were used in pursuit for relevant terms on both business intelligence and banking domains. Moreover, the latent Dirichlet allocation modeling was used in or- der to group articles in several relevant topics. The analysis was conducted using a dictionary of terms belonging to both banking and business intelli- gence domains. Such procedure allowed for the identification of relationships between terms and topics grouping articles, enabling to emerge hypotheses regarding research directions. To confirm such hypotheses, relevant articles were collected and scrutinized, allowing to validate the text mining proce- dure. The results show that credit in banking is clearly the main application trend, particularly predicting risk and thus supporting credit approval or de- nial. There is also a relevant interest in bankruptcy and fraud prediction. Customer retention seems to be associated, although weakly, with targeting, justifying bank offers to reduce churn. In addition, a large number of ar- ticles focused more on business intelligence techniques and its applications, using the banking industry just for evaluation, thus, not clearly acclaiming for benefits in the banking business. By identifying these current research topics, this study also highlights opportunities for future research.
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
Nowadays, many P2P applications proliferate in the Internet. The attractiveness of many of these systems relies on the collaborative approach used to exchange large resources without the dependence and associated constraints of centralized approaches where a single server is responsible to handle all the requests from the clients. As consequence, some P2P systems are also interesting and cost-effective approaches to be adopted by content-providers and other Internet players. However, there are several coexistence problems between P2P applications and In- ternet Service Providers (ISPs) due to the unforeseeable behavior of P2P traffic aggregates in ISP infrastructures. In this context, this work proposes a collaborative P2P/ISP system able to underpin the development of novel Traffic Engi- neering (TE) mechanisms contributing for a better coexistence between P2P applications and ISPs. Using the devised system, two TE methods are described being able to estimate and control the impact of P2P traffic aggregates on the ISP network links. One of the TE methods allows that ISP administrators are able to foresee the expected impact that a given P2P swarm will have in the underlying network infrastructure. The other TE method enables the definition of ISP friendly P2P topologies, where specific network links are protected from P2P traffic. As result, the proposed system and associated mechanisms will contribute for improved ISP resource management tasks and to foster the deployment of innovative ISP-friendly systems.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.