923 resultados para Network control
Resumo:
This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.
Resumo:
In this paper a method for solving the Short Term Transmission Network Expansion Planning (STTNEP) problem is presented. The STTNEP is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In this work we present a constructive heuristic algorithm to find a solution of the STTNEP of excellent quality. In each step of the algorithm a sensitivity index is used to add a circuit (transmission line or transformer) to the system. This sensitivity index is obtained solving the STTNEP problem considering as a continuous variable the number of circuits to be added (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an interior points method that uses a combination of the multiple predictor corrector and multiple centrality corrections methods, both belonging to the family of higher order interior points method (HOIPM). Tests were carried out using a modified Carver system and the results presented show the good performance of both the constructive heuristic algorithm to solve the STTNEP problem and the HOIPM used in each step.
Resumo:
Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.
Resumo:
An analog circuit that implements a radial basis function network is presented. The proposed circuit allows the adjustment of all shape parameters of the radial functions, i.e., amplitude, center and width. The implemented network was applied to the linearization of a nonlinear circuit, a voltage controlled oscillator (VCO). This application can be classified as an open-loop control in which the network plays the role of the controller. Experimental results have proved the linearization capability of the proposed circuit. Its performance can be improved by using a network with more basis functions. Copyright 2007 ACM.
Resumo:
Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out.
Resumo:
This paper is concerned with ℋ 2 and ℋ ∞ filter design for discrete-time Markov jump systems. The usual assumption of mode-dependent design, where the current Markov mode is available to the filter at every instant of time is substituted by the case where that availability is subject to another Markov chain. In other words, the mode is transmitted to the filter through a network with given transmission failure probabilities. The problem is solved by modeling a system with N modes as another with 2N modes and cluster availability. We also treat the case where the transition probabilities are not exactly known and demonstrate our conditions for calculating an ℋ ∞ norm bound are less conservative than the available results in the current literature. Numerical examples show the applicability of the proposed results. ©2010 IEEE.
Resumo:
This paper presents a NCAP embedded on DE2 kit with Nios II processor and uClinux to development of a network gateway with two interfaces, wireless (ZigBee) and wired (RS232) based on IEEE 1451. Both the communications, wireless and wired, were developed to be point-to-point and working with the same protocols, based on IEEE 1451.0-2007. The tests were made using a microcomputer, which through of browser was possible access the web page stored in the DE2 kit and send commands of control and monitoring to both TIMs (WTIM and STIM). The system describes a different form of development of the NCAP node to be applied in different environments with wired or wireless in the same node. © 2011 IEEE.
Resumo:
This work describes a control and supervision application takes into account the virtual instrumentation advantages to control and supervision industrial manufacturing stations belonging to the modular production system MPS® by Festo. These stations integrate sensors, actuators, conveyor belt and other industrial elements. The focus in this approach was to replace the use of programmable logic controllers by a computer equipped with a software application based on Labview and, together, performs the functions of traditional instruments and PLCs. The manufacturing stations had their processes modeled and simulated in Petri nets. After the models were implemented in Labview environment. Tests and previous similar works in MPS® installed in Automation Laboratory, at UNESP Sorocaba campus, showed the materials and methods used in this work allow the successful use of virtual instrumentation. The results indicate the technology as an advantageous approach for the automation of industrial processes, with gains in flexibility and reduction in project cost. © 2011 IEEE.
Resumo:
This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.
Resumo:
This work describes a hardware/software co-design system development, named IEEE 1451 platform, to be used in process automation. This platform intends to make easier the implementation of IEEE standards 1451.0, 1451.1, 1451.2 and 1451.5. The hardware was built using NIOS II processor resources on Alteras Cyclone II FPGA. The software was done using Java technology and C/C++ for the processors programming. This HW/SW system implements the IEEE 1451 based on a control module and supervisory software for industrial automation. © 2011 Elsevier B.V.
Resumo:
Complex biological systems require sophisticated approach for analysis, once there are variables with distinct measure levels to be analyzed at the same time in them. The mouse assisted reproduction, e.g. superovulation and viable embryos production, demand a multidisciplinary control of the environment, endocrinologic and physiologic status of the animals, of the stressing factors and the conditions which are favorable to their copulation and subsequently oocyte fertilization. In the past, analyses with a simplified approach of these variables were not well succeeded to predict the situations that viable embryos were obtained in mice. Thereby, we suggest a more complex approach with association of the Cluster Analysis and the Artificial Neural Network to predict embryo production in superovulated mice. A robust prediction could avoid the useless death of animals and would allow an ethic management of them in experiments requiring mouse embryo.
Resumo:
Neuropsychiatric syndromes are highly prevalent in Alzheimer's disease (AD), but their neurobiology is not completely understood. New methods in functional magnetic resonance imaging, such as intrinsic functional connectivity or resting-state analysis, may help to clarify this issue. Using such approaches, alterations in the default-mode and salience networks (SNs) have been described in Alzheimer's, although their relationship with specific symptoms remains unclear. We therefore carried out resting-state functional connectivity analysis with 20 patients with mild to moderate AD, and correlated their scores on neuropsychiatric inventory syndromes (apathy, hyperactivity, affective syndrome, and psychosis) with maps of connectivity in the default mode network and SN. In addition, we compared network connectivity in these patients with that in 17 healthy elderly control subjects. All analyses were controlled for gray matter density and other potential confounds. Alzheimer's patients showed increased functional connectivity within the SN compared with controls (right anterior cingulate cortex and left medial frontal gyrus), along with reduced functional connectivity in the default-mode network (bilateral precuneus). A correlation between increased connectivity in anterior cingulate cortex and right insula areas of the SN and hyperactivity syndrome (agitation, irritability, aberrant motor behavior, euphoria, and disinhibition) was found. These findings demonstrate an association between specific network changes in AD and particular neuropsychiatric symptom types. This underlines the potential clinical significance of resting state alterations in future diagnosis and therapy. © 2013 Wiley Periodicals, Inc.
Resumo:
This paper presents a methodology for modeling high intensity discharge lamps based on artificial neural networks. The methodology provides a model which is able to represent the device operating in the frequency of distribution systems, facing events related to power quality. With the aid of a data acquisition system to monitor the laboratory experiment, and using $$\text{ MATLAB }^{\textregistered }$$ software, data was obtained for the training of two neural networks. These neural networks, working together, were able to represent with high fidelity the behavior of a discharge lamp. The excellent performance obtained by these models allowed the simulation of a group of lamps in a distribution system with shorter simulation time when compared to mathematical models. This fact justified the application of this family of loads in electric power systems. The representation of the device facing power quality disturbances also proved to be a useful tool for more complex studies in distribution systems. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
The implementation of local geodetic networks for georeferencing of rural properties has become a requirement after publication of the Georeferencing Technical Standard by INCRA. According to this standard, the maximum distance of baselines to GNSS L1 receivers is of 20 km. Besides the length of the baseline, the geometry and the number of geodetic control stations are other factors to be considered in the implementation of geodetic networks. Thus, this research aimed to examine the influence of baseline lengths higher than the regulated limit of 20 km, the geometry and the number of control stations on quality of local geodetic networks for georeferencing, and also to demonstrate the importance of using specific tests to evaluate the solution of ambiguities and on the quality of the adjustment. The results indicated that the increasing number of control stations has improved the quality of the network, the geometry has not influenced on the quality and the baseline length has influenced on the quality; however, lengths higher than 20 km has not interrupted the implementation, with GPS L1 receiver, of the local geodetic network for the purpose of georeferencing. Also, the use of different statistical tests, both for the evaluation of the resolution of ambiguities and for the adjustment, have enabled greater clearness in analyzing the results, which allow that unsuitable observations may be eliminated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)