565 resultados para NONMAGNETIC IMPURITIES
Resumo:
New tungstate-based ceramic pigments, displaying ZnxNi1-xWO4 stoichiometry, were obtained at low temperature using a polymeric precursor method. The powder precursors were milled in an attritor mill in an alcoholic rnedium and heat treated for 12 h. yielding homogeneous and crystalline powder pigments. Characterization (TG/DTA, XRD, IR and colorimetry) showed that mass loss increased with increasing Zn contents. Despite the presence of secondary phases and impurities, the wolframite phase was present in all samples. IR analysis revealed bands related to Me-O and [WO6](6-) group stretching was observed. The intensity of the yellow color of the pigments increased with increasing amount of nickel. (c) 2007 Elsevier Ltd. All fights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.
Resumo:
The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, the intimate metal-insulator and metal-oxide-insulator contact are discussed. Further, the steady-state characteristics of metal-oxide-insulator-metal structures are also discussed. Oxide is an insulator with wider energy band gap (about 50 Å thick). A uniform energetic distribution of impurities is considered in addition to impurities at a single energy level inside the surface charge region at the oxide-insulator interface. Analytical expressions are presented for electrical potential, field, thickness of the depletion region, capacitance, and charge accumulated in the surface charge region. The electrical characteristics are compared with reference to relative densities of two types of impurities. ln I is proportional to the square root of applied potential if energetically distributed impurities are relatively important. However, distribution of the electrical potential is quite complicated. In general energetically distributed impurities can considerably change the electrical characteristics of these structures.
Resumo:
Anomalous thermal behavior on the EPR linewidths has been observed for Gd impurities diluted in CexA1-xBn (A=La,Y, B=Ir,Os,Rh,Pd) intermediate-valence compounds. In this work we show that the exchange interaction between the local magnetic moments and the intermediate-valence host ions has an important contribution to the relaxation rates of the local moments. We calculated the relaxation, using the Redfield formalism and the ideas contained in the interconfigurational fluctuation model of Hirst. We show that the exchange interaction contribution has an exponential dependence on the excitation energy of the intermediate-valence ions. © 1992 The American Physical Society.
Resumo:
The present work reports the study of KCl thin films doped with In+ or Tl+. Both systems show optical absorption bands similar to single crystals. As the impurity concentration increases, so does the absorption as also the half band width, unlike in KCl: Cu+ films. Further experimental techniques such as X-ray diffraction, scanning electron micrographs and energy dispersive X-ray observations were used and comparative analysis with KCl : Cu+ films reveals new conditions for better crystallinity of the samples.
Resumo:
Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.
Resumo:
The two-impurity Anderson model is solved within a effective medium approach. All impurity parameters are modelled via Slater atomic orbitals. Impurity spectral densities and spin correlation functions are readily computed. Results are presented for the zero temperature, half-filled case. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The iron ores of Alegria mine are composed of itabirites enclosing minor bodies of high-grade ores. The itabirites are classified according to mineralogical composition in five types: martite-rich, goethite-rich, specularite-rich, magnetite-rich and anphibolite-rich ores. The hematites are martite-rich, magnetite-rich, specularite-rich and more rarely, amphibolite-rich. Other classification criteria of the ores are based on the physical properties and the degree of compaction. As such, the itabirites and hematites can be classified as hard, friable and soft types. The mineralogical/textural evolution of the ores is linked to the pressure and temperature conditions that accompanied the tectonic processes in anphibolite facies and the different degrees of subsequent surficial weathering processes. Petrographic and microstructural studies indicate that the magnetite and amphibole bearing itabirites represent the parent rocks that created the other itabirites and that the specularite itabirites and the hard martite types are related to silica dissolution and redeposition in zones of high and low strain. Most of itabirites ores correspond to chert oxide facies banded iron formation, except the goethite and amphibole bearing itabirite that resemble a silicate or oxide-silicate facies with minor carbonate impurities. The great mass and pods of soft martite itabirites are probably shaley oxide facies BIFs with little volcanic contribution. Trace element contents of the Alegria's itabirites show strong dissimilarities with BIFs associated with volcanism (Algoma type), but closely ressemble to the Lake Superior type, with high content in Cr, Co and low V, Ni, Cu and Zn. Although the absolute contents of REE present in the Alegria's itabirites are, in general very low, the pattern when normalised by NASC is similar to the great majority of the Archean and Paleoproterozoic BIFs elsewhere in the world, and characterised by positive Eu anomaly.
Resumo:
New materials, based on the well-known spinel compound NiMn 2O4, have been synthesized and characterized from the magnetic point of view. The manganese cation was partially substituted in the general formula NiMn2-xMexO4, by nonmagnetic and magnetic elements, such as Me = Ga, Zn, Ni and Cr (0 × 1). Prior to the determination of their magnetic properties, the non-substituted spinel NiMn2O4 was carefully characterized and studied as a function of the oxygen stoichiometry, based on the influence of the annealing atmosphere and quenching rate. The ferrimagnetic character was observed in all samples, with a paramagnetic-to-ferromagnetic transition temperature T c stabilized at 110 K, and well defined long-range antiferromagnetic interactions at lower temperatures, which depend on the applied field and the substitute concentration. © 2006 Sociedad Chilena de Química.
Resumo:
Water is the raw material used most in the production of diverse pharmaceutical forms and, being a constituent of the formulation itself, is subject to a number of physico-chemical and microbiological specifications. In addition, it is indispensable for laboratory tests and the cleaning of equipment and apparatus. The aim of this study was to ascertain the degree of physicochemical and microbiological contamination of purified water used in compounding pharmacies in the city of São José do Rio Preto, SP, Brazil. Samples were taken as recommended in the USP Pharmacopeia, with careful aseptic technique, and sent immediately the to quality control laboratory. Physicochemical properties were analyzed, including appearance, pH, conductivity, residue after evaporation, ammonia, calcium, chloride, heavy metals, sulfate and oxidizable substances, and microbiological tests were performed: total aerobic microbial count and detection of total and thermotolerant coliforms and Pseudomonas aeruginosa. Results showed that some parameters did not conform to the standards, especially pH, conductivity, inorganic impurities, oxidizable substances and microbiological test data, in 10%, 17%, 10%, 14% and 20% of the analyzed samples, respectively, This points to the need for greater care in the production and/or storage of purified water in these pharmaceutical establishments.
Resumo:
Comparative HPLC-UV and LC-MS/MS studies of impurity profiles of a reference sample (Xenical®, F. Hoffmann-La Roche Ltd., Switzerland) vs. generic (Lipiblock®, EMS-Sigma Pharma, a generic drug) were carried out with ethanol extracts of commercial samples. The generic formulation contained higher levels of common impurities as well as a considerable number of impurities not found in the reference product. The detected impurity profile of Lipiblock® revealed that it most likely is based on fermentation. Since the effect of the impurities is unknown, at this point fully synthetic Xenical® appears to offer a better safety margin than Lipiblock® which, however, compares quite well to other generic formulations.
Resumo:
We report the structural and magnetic properties of Co2MnO 4, partially substituted by Bi at the octahedral site. Bismuth enhances ferromagnetism due to a decrease of the Co2+-Co2+ antiferromagnetic interactions and an increase of the Mn3+-Mn 4+ exchanges. Spurious phases (magnetic and/or nonmagnetic oxides) can easily form because of the large differences between the ionic radii of Bi3+ and Co3+, hiding or altering the intrinsic physical properties of the main BixCo2-xMnO4 phase. An easy way to eliminate the secondary phases is using acid reagents. Short-time etching of Bi0.1Co1.9MnO4 using nitric acid was successfully used, keeping most of the properties of the initial compound, with no alteration of the crystallographic structure. Final stoichiometry was respected (∼Bi0.08Co1.82MnO4), meaning that the material after etching definitely contains bismuth elements in its structure and the observed properties are intrinsic to the oxide spinel. Additional experiments were performed as a function of the synthesis conditions, showing that an optimal pH value of 7 allowed the best magnetic response of the non-doped material. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.