946 resultados para NOAA Office of Ocean Exploration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising atmospheric CO2-concentrations will have severe consequences for a variety of biological processes. We investigated the responses of the green alga Ulva lactuca (Linnaeus) to rising CO2-concentrations in a rockpool scenario. U. lactuca was cultured under aeraton with air containing either preindustrial pCO2 (280µatm) or for the end of the 21st century predicted (700µatm) pCO2 for 31 days. We addressed the following question: Will elevated CO2-concentrations affect photosynthesis (net photosynthesis, rETR(max), Fv/Fm, pigment composition) and growth of U. lactuca in rockpools with limited water exchange? Two phases of the experiment were distinguished: In the initial phase (day 1-4) the Seawater Carbonate System (SWCS) of the culture medium could be adjusted to the selected atmospheric pCO2 condition by continuous aeration with target pCO2 values. In the second phase (day 4-31) the SWCS was largely determined by the metabolism of the growing U. lactuca biomass. In the initial phase, Fv/Fm and rETR(max) were only slightly elevated at high CO2-concentrations whereas growth was significantly enhanced. After 31 days the Chl a content of the thalli was significantly lower under future conditions and the photosynthesis of thalli grown under preindustrial conditions was not dependent on external carbonic anhydrase. Biomass increased significantly at high CO2-concentrations. At low CO2-concentrations most adult thalli disintegrated between day 14 and 21, whereas at high CO2-concentrations most thalli remained integer until day 31. Thallus disintegration at low CO2-concentrations was mirrored in a drastic decline in seawater DIC and HCO3-. Accordingly, the SWCS differed significantly between the treatments. Our results indicated a slight enhancement of photosynthetic performance and significantly elevated growth of U. lactuca at future CO2-concentrations. The accelerated thallus disintegration at high CO2-concentrations under conditions of limited water exchange indicates additional CO2 effects on the life cycle of U. lactuca when living in rockpools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to elucidate possibility of limestone phosphatization during contact with seawater two sets of experiments were carried out: that of solubility of natural phosphates in seawater and that of deposition of phosphorus onto calcareous phase. Concentration of phosphorus in seawater used for solubility experiments varied from 39 to 338 µ/l, temperature was 5.5-17.5°C and pH 7.8-7.9. The lowest solubility was characteristic of ancient crystallized samples. The deposition experiments showed that in case when concentration of dissolved phosphate in seawater reaches 3 mg/l it might be sorbed on solid CaCO3 phase without forming its own mineral. The latter is able to form rapidly but only if magnesium is not present in solution. In magnesium-free water calcium phosphates precipitate when concentration of dissolved phosphorus is higher than 0.9-1.2 mg/l. These results show that phosphatization of limestones in marine environment takes place during their contact with pore water but not with marine bottom water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural remanent magnetization (NRM) of ocean basalts, giving rise to the pattern of marine magnetic anomalies, is known to be of comparatively low intensity for about 20 Ma old oceanic crust. The aim of this study is to detect possible peculiarities in the rock magnetic properties of ocean basalts of this age, and to establish a link between magnetomineralogy, rock magnetic parameters, and the low NRM intensity. Ocean basalts covering ages from 0.7 to 135 Ma were selected for rock magnetic experiments and their room temperature hysteresis parameters, Curie temperature and temperature dependence of saturation magnetization MS(T) was determined and complemented by reflected light microscopy. The majority of samples is magnetically dominated by titanomagnetite and titanomaghemite with increasing oxidation state with age. For these, a strong dependence of hysteresis parameters on the age of the samples is found. The samples have a minimum in saturation magnetization and a maximum in magnetic stability in the age interval ranging from approximately 10 to 40 Ma, coinciding with the age interval of low NRM intensity. The observed change in saturation magnetization is in the same order as that for the NRM intensity. A further peculiarity of the titanomaghemites from this age interval is the shape of their MS(T) curves, which display a maximum above room temperature (Neel P-type) and, sometimes, a self-reversal of magnetization below room temperature (Neel N-type). These special rock magnetic properties can be explained by titanomagnetite low-temperature oxidation and highly oxidized titanomaghemites in the age interval 10-40 Ma. A corresponding measurement of the NRM at elevated temperature allows to identify a maximum in NRM intensity above room temperature for the samples in that age interval. This provides evidence that the NRM is equally carried by titanomaghemites and that the low NRM intensities for about 20 Ma old ocean basalts are caused consequently by the low saturation magnetization of these titanomaghemites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"SIC Code 24."