979 resultados para NEUTROPHIL COLLAGENASE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen Sulfide (H2S) is an endogenous gas involved in several biological functions, including modulation of nociception. However, the mechanisms involved in such modulation are not fully elucidated. The present Study demonstrated that the pretreatment of mice with PAG, a H2S synthesis inhibitor, reduced LPS-induced mechanical paw hypernociception. This inhibition of hypernociception was associated with the prevention of neutrophil recruitment to the plantar tissue. Conversely, PAG had no effect on LPS-induced production of the hypernociceptive cytokines, TNF-alpha, IL-1 beta and CXCL1/KC and on hypernociception induced by PGE(2), a directly acting hypernociceptive mediator. In contrast with the pro-nociceptive role of endogenous H2S. systemic administration of NaHS, a H2S donor, reduced LPS-induced mechanical hypernociception in mice. Moreover, this treatment inhibited mechanical hypernociception induced by PGE(2), suggesting a direct effect of H2S on nociceptive neurons. The antinociceptive mechanism of exogenous H2S depends on K-(ATP)(+) channels since the inhibition of PGE(2) hypernociception by NaHS was prevented by glibenclamide (K-(ATP)(+) channel blocker). Finally, NaHS did not alter the thermal nociceptive threshold in the hot-plate test, confirming that its effect is mainly peripheral. Taken together, these results suggest that H2S has a dual role in inflammatory hypernociception: 1. an endogenous pro-nociceptive effect due to up-regulation of neutrophil migration. and 2. an antinociceptive effect by direct blockade of nociceptor sensitization modulating K-(ATP)(+) channels. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of an extract from a helminth (Ascaris suum) in zymosan-induced arthritis (ZYA) or collagen-induced arthritis (CIA). Rats and mice, respectively, received 1 mg and 0.1 mg zymosan intra-articularly (i.a.). Test groups received an A. suum extract either per os (p.o.) or intraperitoneally (i.p.) 30 min prior to i.a. zymosan. Controls received saline. Hypernociception was measured using the articular incapacitation test. Cell influx, nitrite, and cytokine levels were assessed in joint exudates. The synovia and distal femoral extremities were used for histopathology. Cartilage damage was assessed through determining glycosaminoglycan (GAG) content. DBA/1J mice were subjected to CIA. The test group received A. suum extract i.p. 1 day after CIA became clinically detectable. Clinical severity and hypernociception were assessed daily. Neutrophil influx was determined using myeloperoxidase activity. The A. suum extract, either i.p. or p.o., significantly and dose-dependently inhibited cell influx and hypernociception in ZYA in addition to reducing GAG loss and ameliorating synovitis. The A. suum extract reduced i.a. levels of NO, interleukin-1 beta (IL-1 beta), and IL-10 but not tumor necrosis factor alpha (TNF-alpha) in rats subjected to ZYA while reducing i.a. IL-10, but not IL-1 beta or TNIT-alpha, levels in mice. Clinically, mice subjected to CIA treated with the A. suum extract had less severe arthritis. Hypernociception, myeloperoxidase activity, and synovitis severity were significantly reduced. These data show that a helminth extract given p.o. protects from arthritis severity in two classical arthritis models. This A. suum effect is species independent and functions orally and parenterally. The results show clinical and structural benefits when A. suum extract is given either prophylactically or therapeutically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading, and is supposed to be mediated by several host mediators, such as chemokines. In this study we investigated the pattern of mRNAs expression encoding for osteoblast and osteoclast related chemokines, and further correlated them with the profile of bone remodeling markers in palatal and buccal sides of tooth under orthodontic force, where tensile (T) and compressive (C) forces, respectively, predominate. Real-time PCR was performed with periodontal ligament mRNA from samples of T and C sides of human teeth submitted to rapid maxillary expansion, while periodontal ligament of normal teeth were used as controls. Results showed that both T and C sides exhibited significant higher expression of all targets when compared to controls. Comparing C and T sides, C side exhibited higher expression of MCP-1/CCL2, MIP-1 alpha/CCL3 and RANKL, while T side presented higher expression of OCN. The expression of RANTES/CCL5 and SDF-1/CXCL12 was similar in C and T sides. Our data demonstrate a differential expression of chemokines in compressed and stretched PDL during orthodontic tooth movement, suggesting that chemokines pattern may contribute to the differential bone remodeling in response to orthodontic force through the establishment of distinct microenvironments in compression and tension sides. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Granulocyte-colony stimulating factor (G-CSF) is a current pharmacological approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is most relevant side effect of G-CSF in healthy volunteers and cancer patients. Therefore, the mechanisms of G-CSF-induced hyperalgesia were investigated focusing on the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase). JNK (Jun N-terminal Kinase) and p38, and PI(3)K (phosphatidylinositol 3-kinase). G-CSF induced dose (30-300 ng/paw)-dependent mechanical hyperalgesia, which was inhibited by local post-treatment with morphine. This effect of morphine was reversed by naloxone (opioid receptor antagonist). Furthermore, G-CSF-induced hyperalgesia was inhibited in a dose-dependent manner by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI(3)K (wortmanin) inhibitors. The co-treatment with MAP kinase and PI(3)K inhibitors, at doses that were ineffective as single treatment, significantly inhibited G-CSF-induced hyperalgesia. Concluding, in addition to systemic opioids, peripheral opioids as well as spinal treatment with MAP kinases and PI(3)K inhibitors also reduce G-CSF-induced pain. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Irinotecan (CPT-11) is an inhibitor of DNA topoisomerase I and is clinically effective against several cancers. A major toxic effect of CPT-11 is delayed diarrhea; however, the exact mechanism by which the drug induces diarrhea has not been established. Purpose Elucidate the mechanisms of induction of delayed diarrhea and determine the effects of the cytokine production inhibitor pentoxifylline (PTX) and thalidomide (TLD) in the experimental model of intestinal mucositis, induced by CPT-11. Materials and methods Intestinal mucositis was induced in male Swiss mice by intraperitoneal administration of CPT-11 (75 mg/kg) daily for 4 days. Animals received subcutaneous PTX (1.7, 5 and 15 mg/kg) or TLD (15, 30, 60 mg/kg) or 0.5 ml of saline daily for 5 and 7 days, starting 1 day before the first CPT-11 injection. The incidence of delayed diarrhea was monitored by scores and the animals were sacrificed on the 5th and 7th experimental day for histological analysis, immunohistochemistry for TNF-alpha and assay of myeloperoxidase (MPO) activity, tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and KC ELISA. Results CPT-11 caused significant diarrhea, histopathological alterations (inflammatory cell infiltration, loss of crypt architecture and villus shortening) and increased intestinal tissue MPO activity, TNF-alpha, IL-1 beta and KC level and TNF-alpha immuno-staining. PTX inhibited delayed diarrhea of mice submitted to intestinal mucositis and reduced histopathological damage, intestinal MPO activity, tissue level of TNF-alpha, IL-1 beta and KC and TNF-alpha immuno-staining. TLD significantly reduced the lesions induced by CPT-11 in intestinal mucosa, decreased MPO activity, TNF-alpha tissue level and TNF-alpha immuno-staining, but did not reduce the severity of diarrhea. Conclusion These results suggest an important role of TNF-alpha, IL-1 beta and KC in the pathogenesis of intestinal mucositis induced by CPT-11.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

particularly neutrophil chemoattraction. Herein, the role of C5a in the genesis of inflammatory hypernociception was investigated in rats and mice using the specific C5a receptor antagonist PMX53 (AcF-[OP(D-Cha)WR]). Experimental approach: Mechanical hypernociception was evaluated with a modification of the Randall-Selitto test in rats and electronic pressure meter paw test in mice. Cytokines were measured by ELISA and neutrophil migration was determined by myeloperoxidase activity. Key results: Local pretreatment of rats with PMX53 (60-180 mg per paw) inhibited zymosan-, carrageenan-, lipopolysaccharide (LPS)- and antigen-induced hypernociception. These effects were associated with C5a receptor blockade since PMX53 also inhibited the hypernociception induced by zymosan- activated serum and C5a but not by the direct-acting hypernociceptive mediators, prostaglandin E-2 and dopamine. Underlying the C5a hypernociceptive mechanisms, PMX53 did not alter the cytokine release induced by inflammatory stimuli. However, PMX53 inhibited cytokine-induced hypernociception. PMX53 also inhibited the recruitment of neutrophils induced by zymosan but not by carrageenan or LPS, indicating an involvement of neutrophils in the hypernociceptive effect of C5a. Furthermore, the C5a-induced hypernociception was reduced in neutrophil-depleted rats. Extending these findings in rats, blocking C5a receptors also reduced zymosan- induced joint hypernociception in mice. Conclusions and implications: These results suggest that C5a is an important inflammatory hypernociceptive mediator, acting by a mechanism independent of hypernociceptive cytokine release, but dependent on the presence of neutrophils. Therefore, we suggest that inhibiting the action of C5a has therapeutic potential in the control of inflammatory pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Chemokine receptors CXCR1 and CXCR2 may mediate influx of neutrophils in models of acute and chronic inflammation. The potential benefits of oral administration of a CXCR1/2 inhibitor, DF 2162, in adjuvant-induced polyarthritis (AIA) were investigated. Experimental approach: A model of AIA in rats was used to compare the therapeutic effects of the treatment with DF2162, anti-TNF or anti-CINC-1 antibodies on joint inflammation and local production of cytokines and chemokines. Key results: DF2162 prevented chemotaxis of rat and human neutrophils induced by chemokines acting on CXCR1/2. DF2162 was orally bioavailable and metabolized to two major metabolites. Only metabolite 1 retained CXCR1/2 blocking activity. Treatment with DF2162 ( 15 mg kg(-1), twice daily) or metabolite 1, but not metabolite 2, starting on day 10 after arthritis induction diminished histological score, the increase in paw volume, neutrophil influx and local production of TNF, IL-1 beta, CCL2 and CCL5. The effects of DF2162 were similar to those of anti-TNF, and more effective than those of anti-CINC-1, antibodies. DF2162 prevented disease progression even when started 13 days after arthritis induction. Conclusions and implications: DF 2162, a novel orally-active non-competitive allosteric inhibitor of CXCR1 and CXCR2, significantly ameliorates AIA in rats, an effect quantitatively and qualitatively similar to those of anti-TNF antibody treatment. These findings highlight the contribution of CXCR2 in the pathophysiology of AIA and suggest that blockade of CXCR1/2 may be a valid therapeutic target for further studies aiming at the development of new drugs for treatment of rheumatoid arthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leukotriene B-4 (LTB4) mediates different inflammatory events such as neutrophil migration and pain. The present study addressed the mechanisms of LTB4-mediated joint inflammation-induced hypernociception. It was observed that zymosan-induced articular hypernociception and neutrophil migration were reduced dose-dependently by the pretreatment with MK886 (1-9 mg/kg; LT synthesis inhibitor) as well as in 5-lypoxygenase-deficient mice (5LO(-/-)) or by the selective antagonist of the LTB4 receptor (CP105696; 3 mg/kg). Histological analysis showed reduced zymosan-induced articular inflammatory damage in 5LO(-/-) mice. The hypernociceptive role of LTB4 was confirmed further by the demonstration that joint injection of LTB4 induces a dose (8.3, 25, and 75 ng)-dependent articular hypernociception. Furthermore, zymosan induced an increase in joint LTB4 production. Investigating the mechanism underlying LTB4 mediation of zymosan-induced hypernociception, LTB4-induced hypernociception was reduced by indomethacin (5 mg/kg), MK886 (3 mg/kg), celecoxib (10 mg/kg), antineutrophil antibody (100 mu g, two doses), and fucoidan (20 mg/kg) treatments as well as in 5LO(-/-) mice. The production of LTB4 induced by zymosan in the joint was reduced by the pretreatment with fucoidan or antineutrophil antibody as well as the production of PGE(2) induced by LTB4. Therefore, besides reinforcing the role of endogenous LTB4 as an important mediator of inflamed joint hypernociception, these results also suggested that the mechanism of LTB4-induced articular hypernociception depends on prostanoid and neutrophil recruitment. Furthermore, the results also demonstrated clearly that LTB4-induced hypernociception depends on the additional release of endogenous LTs. Concluding, targeting LTB4 synthesis/action might constitute useful therapeutic approaches to inhibit articular inflammatory hypernociception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To evaluate the effect of inhibiting inducible nitric oxide synthase (iNOS), by aminoguanidine, or leukocyte infiltration, by fucoidin, on gastropathy induced by two different doses of indomethacin in rats. Methods: Rats were treated with saline, aminoguanidine (50 or 100 mg.kg(-1), i. p.) or fucoidin (25 mg.kg(-1), i. v.). Indomethacin was then given at a dose of 5 or 20 mg.kg(-1). At the end of 3 h, macroscopic gastric damage and myeloperoxidase (MPO) activity were assessed. Results: Aminoguanidine reduced the gastric damage induced by indomethacin at 20 mg.kg(-1), but increased gastric MPO activity. However, aminoguanidine did not influence the gastric damage induced by indomethacin at 5 mg.kg(-1). Fucoidin prevented both the gastric damage and the increase in gastric MPO activity induced by indomethacin at 20 mg. kg(-1), but not at 5 mg.kg(-1). Conclusion: Indomethacin at a dose of 20 mg.kg(-1), but not at 5 mg.kg(-1), induced gastropathy dependent on neutrophil infiltration and iNOS-generated NO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophils are key effectors of the innate immune response. Reduction of neutrophil migration to infection sites is associated with a poor outcome in sepsis. We have demonstrated a failure of neutrophil migration in lethal sepsis. Together with this failure, we observed more bacteria in both peritoneal exudates and blood, followed by a reduction in survival rate. Furthermore, neutrophils obtained from severe septic patients displayed a marked reduction in chemotactic response compared with neutrophils from healthy subjects. The mechanisms of neutrophil migration failure are not completely understood. However, it is known that they involve systemic Toll-like receptor activation by bacteria and/or their products and result in excessive levels of circulating cytokines/chemokines. These mediators acting together with LPS stimulate expression of iNOS that produces high amounts of NO, which in turn mediates the failure of neutrophil migration. NO reduced expression of CXCR2 on neutrophils and the levels of adhesion molecules on both endothelial cells and neutrophils. These events culminate in decreased endothelium-leukocyte interactions, diminished neutrophil chemotactic response, and neutrophil migration failure. Additionally, the NO effect, at least in part, is mediated by peroxynitrite. In this review, we summarize what is known regarding the mechanisms of neutrophil migration impairment in severe sepsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypnea cervicornis agglutinin (HCA), a lectin isolated from the red marine alga has been previously shown to have an antinociceptive effect. In the present study in rats, mechanisms of action of HCA were addressed regarding mechanical hypernociception induced by carrageenan, ovalbumin (as antigen), and also by prostaglandin E(2) in rats. The lectin administered intravenously inhibited carrageenan- and antigen-induced hypernociception at 1,3, 5 and 7 h. This inhibitory effect was completely prevented when lectin was combined with mucin, demonstrating the role of carbohydrate-binding sites. The inhibition of inflammatory hypernociception by HCA was associated with the prevention of neutrophil recruitment to the plantar tissue of rats but was not associated with the inhibition of the release of pro-hypernociceptive cytokines (TNF-alpha, IL-1 beta and CINC-1). HCA also blocked mechanical hypernociception induced by PGE(2), which was prevented by the administration of nitric oxide synthase inhibitors. These results were corroborated by the increased circulating levels of NO metabolites following HCA treatment. These findings suggest that the anti-hypernociceptive effects of HCA are not associated with the inhibition of pro-inflammatory cytokine production. However, these effects seem to involve the inhibition of neutrophil migration and also the increase in NO production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR(-/-)). Wild-type mice or PAFR(-/-) mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured. 5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-alpha, IL-1 beta and KC in comparison with saline-treated animals. In PAFR(-/-) mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-alpha, IL-1 beta and KC concentration. In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.