976 resultados para NEUTRON BEAMS
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
Structures with governing equations having identical inertial terms but somewhat differing stiffness terms can be termed flexurally analogous. An example of such a structure includes an axially loaded non-uniform beam and an unloaded uniform beam, for which an exact solution exists. We find that there exist shared eigenpairs (frequency and mode shapes) for a particular mode between such structures. Non-uniform beams with uniform axial loads, gravity loaded beams and rotating beams are considered and shared eigenpairs with uniform beams are found. In general, the derived flexural stiffness functions (FSF's) for the non-uniform beams required for the existence of shared eigenpair have internal singularities, but some of the singularities can be removed by an appropriate selection of integration constants using the theory of limits. The derived functions yield an insight into the relationship between the axial load and flexural stiffness of axially loaded beam structures. The derived functions can serve as benchmark solutions for numerical methods. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we seek to find nonrotating beams that are isospectral to a given tapered rotating beam. Isospectral structures have identical natural frequencies. We assume the mass and stiffness distributions of the tapered rotating beam to be polynomial functions of span. Such polynomial variations of mass and stiffness are typical of helicopter and wind turbine blades. We use the Barcilon-Gottlieb transformation to convert the fourth-order governing equations of the rotating and the nonrotating beams, from the (x, Y) frame of reference to a hypothetical (z, U) frame of reference. If the coefficients of both the equations in the (z, U) frame match with each other, then the nonrotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients lead to a pair of coupled differential equations. Wesolve these coupled differential equations numerically using the fourth-order Runge-Kutta scheme. We also verify that the frequencies (given in the literature) of standard tapered rotating beams are the frequencies (obtained using the finite-element analysis) of the isospectral nonrotating beams. Finally, we present an example of beams having a rectangular cross-section to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these isospectral nonrotating beams to calculate the frequencies of the rotating beam.
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
A dimensionless number, termed response number in the present paper, is suggested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic governing equations of beams and plates. The number is defined as the product of the Johnson's damage number and the square of the half of the slenderness ratio for a beam; the product of the damage number and the square of the half of the aspect ratio for a plate or membrane loaded dynamically. Response number can also be considered as the ratio of the inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are reflected in this dimensionless number: the inertia of the applied dynamic loading, the resistance ability of the material to the deformation caused by the loading and the geometrical influence of the structure on the dynamic response. For an impulsively loaded beam or plate, the final dimensionless deflection is solely dependent upon the response number. When the secondary effects of finite deflections, strain-rate sensitivity or transverse shear are taken into account, the response number is as useful as in the case of simple bending theory. Finally, the number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of general shape.
Resumo:
The creep response of metallic foam sandwich beams in 3-point bend is investigated numerically for the case of a metallic foam core and two steel faces. The face sheets are treated as elastic, while the foam core is modeled by a viscoplastic extension of the Deshpande-Fleck yield surface. This power-law creeping constitutive law has been implemented within the commercial finite element code ABAQUS. It is found that the beams creep by a variety of competing mechanisms, depending upon the choice of material properties and the geometric parameters. A failure map is constructed and effect of rate dependence on the load-deflection curves is quantified, and compared against the available experimental data.
Resumo:
Plastic collapse modes of sandwich beams have been investigated experimentally and theoretically for the case of an aluminum alloy foam with cold-worked aluminum face sheets. Plastic collapse is by three competing mechanisms: face yield, indentation and core shear, with the active mechanism depending upon the choice of geometry and material properties. The collapse loads, as predicted by simple upper bound solutions for a rigid, ideally plastic beam, and by more refined finite element calculations are generally in good agreement with the measured strengths. However, a thickness effect of the foam core on the collapse strength is observed for collapse by core shear: the shear strength of the core increases with diminishing core thickness in relation to the cell size. Limit load solutions are used to construct collapse maps, with the beam geometrical parameters as axes. Upon displaying the collapse load for each collapse mechanism, the regimes of dominance of each mechanism and the associate mass of the beam are determined. The map is then used in optimal design by minimizing the beam weight for a given structural load index.
Resumo:
Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.