971 resultados para NEURAL STEM-CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adipose tissue may represent a potential source of adult stem cells for tissue engineering applications in veterinary medicine. It can be obtained in large quantities, under local anesthesia, and with minimal discomfort. In this study, canine adipose tissue was obtained by biopsy from subcutaneous adipose tissue or by suction-assisted lipectomy (i.e., liposuction). Adipose tissue was processed to obtain a fibroblast-like population of cells similar to human adipose-derived stem cells (hASCs). These canine adipose-derived stem cells (cASCs) can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of cASCs are of mesodermal or mesenchymal origin. cASCs are able to differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirate, canine adipose tissue may also contain multipotent cells and represent an important stem cell source both for veterinary cell therapy as well as preclinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used P19 embryonal carcinoma cells as in vitro model for early neurogenesis to study ionotropic P2X and metabotropic P2Y receptor-induced Ca2+ transients and their participation in induction of proliferation and differentiation. In embryonic P19 cells, P2Y(1), P2Y(2) and P2X(4) receptors or P2X-heteromultimers with similar P2X4 pharmacology were responsible for ATP and ATP analogue-induced Ca2+ transients. In neuronal-differentiated cells, P2Y(2), P2Y(6), P2X(2) and possibly P2X(2)/P2X(6) heteromeric receptors were the major mediators of the elevations in intracellular free calcium concentration [Ca2+](i). We have collected evidence for the involvement of metabotropic purinergic receptors in proliferation induction of undifferentiated and neural progenitor cells by using a BrdU-incorporation assay. ATP-, UTP-, ADP-, 2-MeS-ATP- and ADP-beta S-induced proliferation in P19 cells was mediated by P2Y, and P2Y2 receptors as judged from pharmacological profiles of receptor responses. ATP-provoked acceleration of neuronal differentiation, determined by analysis of nestin and neuron-specific enolase gene and protein expression, also resulted from P2Y, and P2Y2 receptor activation. Proliferation- and differentiation-induction involved the activation of inositol-trisphosphate sensitive intracellular Ca2+ stores. (C) 2008 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Mesenchymal stem cells (MSCs) from human umbilical cord vein have great potential for use in cell therapy because of their ease of isolation, expansion, and differentiation, in addition to their relative acceptance from the ethical point of view. Obtaining the umbilical cord at birth does not present any risk to either mother or child. Objective. To isolate and promote in vitro expansion and differentiation of MSCs from human umbilical cord vein into cells with a pancreatic endocrine phenotype. Methods. Mesenchymal stem cells obtained from human umbilical cord vein via collagenase digestion were characterized at cytochemistry and fluorescent-activated cell sorting, and expanded in vitro. Differentiation of MSCs into an endocrine phenotype was induced using high-glucose (23 mmol/L) medium containing nicotinamide, exendin-4, and 2-mercaptoethanol. Expression of insulin, somatostatin, glucagon, and pancreatic and duodenal homeobox 1 was analyzed using immunofluorescence. Results. Cells isolated from the umbilical cord vein were MSCs as confirmed at cytochemistry and fluorescent-activated cell sorting. Expression of somatostatin, glucagon, and pancreatic and duodenal homeobox 1 by differentiated cells was demonstrated using immunofluorescence. Insulin was not expressed. Conclusions. The MSC differentiation protocol used in the present study induced expression of some endocrine markers. Insulin was not produced by these cells, probably because of incomplete induction of differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Mesenchymal stem cells (MSCs) are an attractive source for generation of cells with beta-cell properties. Previous studies have demonstrated the ability of prolactin to induce an increase in beta-cell mass and maturation, which suggests beneficial effects of its use in MSC differentiation protocols. Objective. To evaluate the expression of endocrine differentiation markers in rat MSCs treated in vitro with prolactin. Methods. Mesenchymal stem cells from bone marrow of Wistar rats were isolated, expanded, and characterized. Differentiation of MSCs was induced in medium containing 23 mmol/L of glucose, and nicotinamide, 2-mercaptoethanol, and exendin-4, in the presence or absence of 500 ng/mL of rat recombinant prolactin. Expression of endocrine markers and prolactin receptor genes was evaluated using real-time polymerase chain reaction, and compared between culture stages and presence vs absence of prolactin in the culture medium. Expression of insulin, somatostatin, glucagon, and pancreatic and duodenal homeobox 1 was also evaluated at immunofluorescence microscopy. Results. Isolated cells were mostly MSCs, as confirmed at fluorescent-activated cell sorting and cytochemistry. Pax6, Ngn-3, Isl1, NeuroD1, Nkx2.2, and Nkx6.1 exhibited varied expression during culture stages. The long form of the prolactin receptor messenger RNA was induced in prolactin-treated cultures (P < .05). The somatostatin gene was induced in early stages of differentiation (P < .05), and its expression was induced by prolactin, as confirmed using immunofluorescence. Conclusion. Culture of rat bone marrow MSCs in differentiation medium induces expression of pancreatic endocrine-specific genes, and somatostatin and prolactin receptor expression was also induced by prolactin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2 vertical bar x vertical bar 10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson`s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009;27:3063-3073

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinase C (PKC) plays a key role in embryonic stem cell (ESC) proliferation, self-renewal and differentiation However, the function of specific PKC Isoenzymes have yet to be determined Of the PKCs expressed in undifferentiated ESCs, beta IPKC was the only isoenzyme abundantly expressed in the nuclei To investigate the role of beta IPKC in these cells, we employed a phosphoproteomics strategy and used two classical (cPKC) peptide modulators and one beta IPKC-specific inhibitor peptide We identified 13 nuclear proteins that are direct or indirect beta IPKC substrates in undifferentiated ESCs These proteins are known to be involved in regulating transcription, splicing, and chromatin remodeling during proliferation and differentiation Inhibiting beta IPKC had no effect on DNA synthesis in undifferentiated ESCs However, upon differentiation many cells seized to express beta IPKC and beta IPKC was frequently found in the cytoplasm Taken together, our results suggest that beta IPKC takes part in the processes that maintain ESCs in their undifferentiated state

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)