963 resultados para NETWORK REDUCTION
Resumo:
Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being enabled if the place contains one or more tokens. While reset/inhibitor nets increase the expressive power of Petri nets, they also result in increased complexity of analysis techniques. One way of speeding up Petri net analysis is to apply reduction rules. Unfortunately, many of the rules defined for classical Petri nets do not hold in the presence of reset and/or inhibitor arcs. Moreover, new rules can be added. This is the first paper systematically presenting a comprehensive set of reduction rules for reset/inhibitor nets. These rules are liveness and boundedness preserving and are able to dramatically reduce models and their state spaces. It can be observed that most of the modeling languages used in practice have features related to cancellation and blocking. Therefore, this work is highly relevant for all kinds of application areas where analysis is currently intractable.
Resumo:
Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSC) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSC directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSC under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.
Resumo:
With the rapid increase in electrical energy demand, power generation in the form of distributed generation is becoming more important. However, the connections of distributed generators (DGs) to a distribution network or a microgrid can create several protection issues. The protection of these networks using protective devices based only on current is a challenging task due to the change in fault current levels and fault current direction. The isolation of a faulted segment from such networks will be difficult if converter interfaced DGs are connected as these DGs limit their output currents during the fault. Furthermore, if DG sources are intermittent, the current sensing protective relays are difficult to set since fault current changes with time depending on the availability of DG sources. The system restoration after a fault occurs is also a challenging protection issue in a converter interfaced DG connected distribution network or a microgrid. Usually, all the DGs will be disconnected immediately after a fault in the network. The safety of personnel and equipment of the distribution network, reclosing with DGs and arc extinction are the major reasons for these DG disconnections. In this thesis, an inverse time admittance (ITA) relay is proposed to protect a distribution network or a microgrid which has several converter interfaced DG connections. The ITA relay is capable of detecting faults and isolating a faulted segment from the network, allowing unfaulted segments to operate either in grid connected or islanded mode operations. The relay does not make the tripping decision based on only the fault current. It also uses the voltage at the relay location. Therefore, the ITA relay can be used effectively in a DG connected network in which fault current level is low or fault current level changes with time. Different case studies are considered to evaluate the performance of the ITA relays in comparison to some of the existing protection schemes. The relay performance is evaluated in different types of distribution networks: radial, the IEEE 34 node test feeder and a mesh network. The results are validated through PSCAD simulations and MATLAB calculations. Several experimental tests are carried out to validate the numerical results in a laboratory test feeder by implementing the ITA relay in LabVIEW. Furthermore, a novel control strategy based on fold back current control is proposed for a converter interfaced DG to overcome the problems associated with the system restoration. The control strategy enables the self extinction of arc if the fault is a temporary arc fault. This also helps in self system restoration if DG capacity is sufficient to supply the load. The coordination with reclosers without disconnecting the DGs from the network is discussed. This results in increased reliability in the network by reduction of customer outages.
Resumo:
This article reviews some key critical writing about the commodification or exploitation of networked social relations in the creative industries. Through a comparative case study of networks in fashion and new media industries in the city of Manchester, UK, the article draws attention to the social, cultural and aesthetic aspects of the networks among creative practitioners. It argues that within the increasing commercialisation in the creative industries there are networked spaces within which non-instrumental values are created. The building of social networks reflects on the issue of how creatives perceive their work in these industries both economically and socially/culturally.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics
Resumo:
In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.
Resumo:
The reduction of CO2 emissions and social exclusion are two key elements of UK transport strategy. Despite intensive research on each theme, little effort has so far been made linking the relationship between emissions and social exclusion. In addition, current knowledge on each theme is limited to urban areas; little research is available on these themes for rural areas. This research contributes to this gap in the literature by analysing 157 weekly activity-travel diary data collected from three case study areas with differential levels of area accessibility and area mobility options, located in rural Northern Ireland. Individual weekly CO2 emission levels from personal travel diaries (both hot exhaust emission and cold-start emission) were calculated using average speed models for different modes of transport. The socio-spatial patterns associated with CO2 emissions were identified using a general linear model whereas binary logistic regression analyses were conducted to identify mode choice behaviour and activity patterns. This research found groups that emitted a significantly lower level of CO2 included individuals living in an area with a higher level of accessibility and mobility, non-car, non-working, and low-income older people. However, evidence in this research also shows that although certain groups (e.g. those working, and residing in an area with a lower level of accessibility) emitted higher levels of CO2, their rate of participation in activities was however found to be significantly lower compared to their counterparts. Based on the study findings, this research highlights the need for both soft (e.g. teleworking) and physical (e.g. accessibility planning) policy measures in rural areas in order to meet government’s stated CO2 reduction targets while at the same time enhancing social inclusion.
Resumo:
This paper presents a group maintenance scheduling case study for a water distributed network. This water pipeline network presents the challenge of maintaining aging pipelines with the associated increases in annual maintenance costs. The case study focuses on developing an effective maintenance plan for the water utility. Current replacement planning is difficult as it needs to balance the replacement needs under limited budgets. A Maintenance Grouping Optimization (MGO) model based on a modified genetic algorithm was utilized to develop an optimum group maintenance schedule over a 20-year cycle. The adjacent geographical distribution of pipelines was used as a grouping criterion to control the searching space of the MGO model through a Judgment Matrix. Based on the optimum group maintenance schedule, the total cost was effectively reduced compared with the schedules without grouping maintenance jobs. This optimum result can be used as a guidance to optimize the current maintenance plan for the water utility.