930 resultados para Multilayer Adsorption
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this work was to identify the degradation compounds produced during irradiation of multilayer polyamide 6 (PA-6) films and to study their migration into water and 95% ethanol food simulant. After irradiation of multilayer PA-6 films at 3, 7 and 12 kGy, degradation compounds were extracted using solid-phase microextraction, for which the time and temperature of extraction and stirring were optimized, and identified by gas chromatography-mass spectrometry. Caprolactam, 2-cyclopentylcyclopentanone and aldehydes, among other compounds, were identified in the headspace of the films. Polydimethylsiloxane was considered the best fiber for extraction. The optimum conditions of time, temperature and stirring to extract the compounds were 20 min, 80 degrees C and 225 rpm. For validation purposes, the compounds were quantified in water and 95% ethanol and the results showed high sensitivity, good precision and accuracy. Migration of compounds from irradiated and non-irradiated multilayer PA-6 films into water and 95% ethanol food simulants was carried out at 40 degrees C for 10 days. The method was efficient for the quantification of decaldehyde, 2-cyclopentylcyclopentanone and caprolactam that migrated from multilayer PA-6 films into food simulants.
Resumo:
Dendritic nucleic acids are highly branched and ordered molecular structures, possessing numerous single-stranded oligonucleotide arms, which hold great promise for enhancing the sensitivity of DNA biosensors. This article evaluates the interfacial behavior and redox activity of nucleic acid dendrimers at carbon paste electrodes, in comparison to DNA. Factors influencing the adsorption behavior, including the adsorption potential and time, solution conditions, or dendrimer concentration, are explored. The strong adsorption at the anodically pretreated carbon surface is exploited for an effective preconcentration step prior to the chronopotentiometric measurement of the surface species. Coupled with the numerous guanine oxidation sites, such stripping protocol offers remarkably low detection limits (e.g., 3 pM or 2.4 femtomole of the I-layer dendrimer following a 15 min accumulation). The new observations bear important implications upon future biosensing applications of nucleic dendrimers.
Resumo:
The isotherms of adsorption of MeX2 (Me = Cu2+, Co2+; X = Cl-, Br-, ClO4-) by silica gel chemically modified with 2-mercaptoimidazole (SiMI) were studied in acetone and ethanol solutions, at 25 degrees C. Covalently attached 2-mercaptoimidazole molecule to silica gel surface adsorbs MeX2 from solvent by forming a surface complex. The metal is bonded to the surface through the nitrogen atom of attached 2-mercaptoimidazole. At low loading, the electronic and ESR spectral parameters indicated that the Cu2+ complexes are in a distorted-tetragonal symmetry field. The d-d electronic transition spectra showed that for Cu(ClO4)(2) complex, the peak of absorption did not change for any degree of metal loading and for Cl- and Br- complexes, the peak maxima shifted to higher energy with lower metal loading. The CoX2(X = Cl-, Br-, ClO4-) analogues possess a distorted-tetrahedral field.
Resumo:
In this paper we report on the synthesis, characterization, and adsorption properties of the first 3-amino-1,2,4-triazole-modified porous silsesquioxane (ATPS). The isotherms of adsorption of MX2 (M = Cu(II), Co(II); X = Cl-, Br-, ClO4-) by ATPS were studied in ethanol and aqueous solutions at 298 K. The results showed that there is a good fit between the experimental data and the Langmuir isotherm. The adsorption capacity in both solvents followed the sequence Cu(II) >> Co(II). The lowest adsorption for Co(II) should be related to the largest hydration volume, which obstructs the adsorption capacity of the surface, and consequently causes a decrease in the number of cations adsorbed. For the salts with different anions the sequence was MCl2 > MBr2 > M(ClO4)2 in both solvents. The low affinity for M(ClO4)(2) toward the solid phase is a consequence of the poorer coordination ability of the ClO4-. Adsorptions from ethanol solutions were higher than those from aqueous solutions due to the higher polarity of water, which can more strongly solvate the solute and the basic sites on the surface. The following adsorption capacities (in mmol g(-1)) were determined: 0.24 (aq) and 0.84 (eth) for CuCl2, 0.09 (aq) and 0.16 (eth) for CuBr2, and 0.08 (aq) and 0.11 (eth) for Cu(ClO4)(2); 0.02 (aq) and 0.07 (eth) for CoCl2, 0.02 (aq) and 0.06 (eth) for CoBr2, and 0.01 (aq) and 0.05 (eth) for Co(ClO4)(2). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work describes the synthesis of octa (hydridodimethylsiloxyl) octasilsesquioxane, (Q(8)M(8)(H)) and its thermolysis in pyridine media. The new compound called CPy was characterized by FTIR, NMR-MAS, XRD, MEV spectroscopies and TGA analyses. These results indicate that silsesquioxanes cages (octanion) are maintained after thermal treatment. A cleavage of vertex siloxy groups yielding a nanocomposite with polymeric nature is proposed. Its structure and morphology allows the adsorption/inclusion of electrochemical mediator, toluidine blue O. The square wave voltammetry analysis of resulting composite (CPyTBO) exhibits two redox couple with a formal potential (E-0') 0.1 V and 0.26 V to I and II redox couples respectively, (Britton-Robinson (BR) buffer pH 3, v = 10 Hz versus SCE) ascribed to a monomer and dimmer of the toluidine blue species. This paper opens the use of spherosiloxane derived materials a's host for small molecules in the electrochemical field. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The isotherms of adsorption of CuX2 (X = Cl-, Br, ClO4-,) by silica gel chemically modified with thiazolidine-2-thione were studied in acetone (ac) and ethanol (eth) solutions at 25 degrees C. The following equilibrium constants (in 1 mol(-1)) were determined: a) CuCl2, 1.9 x 10(3) (ac), 1.6 x 10(3) (eth); b) CuBr2, 1.7 x 10(3) (ac), 1.2 x 10(3) (eth); c) Cu(ClO4)(2), 1.1 x 10(3) (ac), 1.0 x 10(3) (eth). The electron spin resonance spectra of the surface complexes indicate a tetragonal distorted structure in the case of lower degrees of metal loading on the chemically modified surface. The d-d electronic transition spectra show that for the ClO4- complex, the peak of absorption did not change for any degree of metal loading, and for Cl- and Br complexes, the peak maxima shift to higher energy with lower metal loading.
Resumo:
The isotherms of adsorption of MX2 (M = Cu2+, Co2+; X = Cl-, Br-, ClO4) by silica gel chemically modified with 3-amino-1,2,4-triazole (SiATR) were studied in acetone and ethanol solutions, at 25 degrees C. The 3-amino-1,2,4-triazole molecule, covalently bound to the silica gel surface, adsorbs MX2 from solvent by forming a surface complex. At low loading, the electronic and electron spin resonance spectral parameters indicated that the Cu2+ complexes have distorted tetragonal symmetry. The CoX2 (X = Cl-, Br-) analogues exhibit a distorted-tetrahedral geometry, whilstthe (SiATR)mCo)ClO4)(2) complex has a tetragonally distorted octahedral geometry, with four equatorial nitrogen atoms around the cobalt. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The material octakis[3-(3-amino- 1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) was synthesized and its potential was assessed for Cu(II), Ni(II), Co(II), Zn(II) and Fe(III) from their ethanol solutions and compared with related 3-amino-1,2,4-triazole-propyl modified silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from ethanol solution. The Langmuir model allowed to describe the sorption of the metal ions on ATZ-SSQ and ATTZ-SG in a satisfactory way. The equilibrium is reached very quickly Q min) for ATZ-SSQ, indicating that the adsorption sites are well exposed. The maximum metal ion uptake values for Cu(II), Co(II), Zn(II), Ni(II) and Fe(III) were 0.86, 0.09, 0.19, 0.09 and 0.10 mmol g(-1), respectively, for the ATZ-SSQ, which were higher than the corresponding values 0.21, 0.04, 0.14, 0.05 and 0.07 mmol g(-1) achieved with the ATZ-SG. In order to obtain more information on the metal-ligand interaction of the complexes on the surface of the ATZ-SSQ, Cu(II) was used as a probe to determine the arrangements of the ligands around the central metal ion by electron spin resonance (ESR). The ATZ-SSQ was used for the separation and determination (in flow using a column technique) of the metal ions present in commercial ethanol. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An investigation was made on the adsorption and kinetics of photodegradation of potassium hydrogenphthalate in an aqueous suspension of TiO2. Two models, Langmuir and Freundlich, were used to describe the adsorption process and the model proposed by Langmuir-Hinshelwood (L-H) was employed to describe the kinetics of the photodecomposition reactions of hydrogenphthalate. The results of the adsorptions were fitted to the models proposed by Langmuir and Freundlich. Adsorption was found to be a function of the temperature, with adsorption capacity increasing from 2.4 to 4.5 mg/g when the temperature rose from 20 to 30 degrees C. The kinetic model indicates that the rate constant, k, of the first order reaction, is high in the 10.0 to 100 mg/l interval, which is coherent with the low value of the adsorption constant, K. The results fitted to the L-H model led to an equation that, within the range of concentrations studied here, theoretically allows one to evaluate the photodegradation rate. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL(-1). Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.
Resumo:
We model the electrical behavior of organic light-emitting diodes whose emissive multilayer is formed by blends of an electron transporting material, tris-(8-hydroxyquinoline) aluminum (Alq(3)) and a hole transporting material, N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4-diamine. The multilayer is composed of layers of different concentration. The Alq(3) concentration gradually decreases from the cathode to the anode. We demonstrate that these graded devices have higher efficiency and operate at lower applied voltages than devices whose emissive layer is made of nominally homogeneous blends. Our results show an important advantage of graded devices, namely, the low values of the recombination rate distribution near the cathode and the anode, so that electrode quenching is expected to be significantly suppressed in these devices. (C) 2004 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)