978 resultados para Multidrug-resistant organisms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

P-glycoprotein (Pgp), a transmembrane efflux pump encoded by the MDR1 gene, transports various lipophilic drugs that enter the cell by passive diffusion through the lipid bilayer. Pgp-expressing multidrug-resistant cell lines are not usually cross-resistant to a hydrophilic antifolate methotrexate (MTX). MTX enters cells primarily through a folate carrier, but passive diffusion becomes the primary mode of MTX uptake in carrier-deficient cells. To test if a deficiency in MTX carrier would allow Pgp to confer resistance to MTX, a MTX carrier-deficient cell line (3T6-C26) was infected with a recombinant retrovirus expressing the human MDR1 gene. The infected 3T6-C26 cells showed increased survival in MTX relative to uninfected cells. Multistep selection of the infected cells with vinblastine led to increased Pgp expression and a concomitant increase in resistance to MTX. MTX resistance of Pgp-expressing 3T6-C26 cells was reduced by Pgp inhibitors, including a Pgp-specific monoclonal antibody UTC2. In contrast, the expression and the inhibition of Pgp had no effect on MTX resistance in 3T6 cells with normal carrier-mediated MTX uptake. Thus, a deficiency in the MTX carrier enables Pgp to confer resistance to MTX, suggesting that hydrophilic compounds may become Pgp substrates when such compounds enter cells by passive diffusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the resurgence of tuberculosis and the emergence of multidrug-resistant strains, fluoroquinolones (FQ) are being used in selected tuberculosis patients, but FQ-resistant strains of Mycobacterium tuberculosis have rapidly begun to appear. The mechanisms involved in FQ resistance need to be elucidated if the effectiveness of this class of antibiotics is to be improved and prolonged. By using the rapid-growing Mycobacterium smegmatis as a model genetic system, a gene was selected that confers low-level FQ resistance when present on a multicopy plasmid. This gene, lfrA, encodes a putative membrane efflux pump of the major facilitator family, which appears to recognize the hydrophilic FQ, ethidium bromide, acridine, and some quaternary ammonium compounds. It is homologous to qacA from Staphylococcus aureus, tcmA, of Streptomyces glaucescens, and actII and mmr, both from Streptomyces coelicoler. Increased expression of lfrA augments the appearance of subsequent mutations to higher-level FQ resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have identified verotoxin 1 (VT1) as the active component within an antineoplastic bacteriocin preparation from Escherichia coli HSC10 studied over two decades. Recombinant VT1 can simulate the toxicity of anticancer proteins (ACP), and the antineoplastic activity of ACP (and VT1) was abrogated by treatment with anti-VT1 antibody. Similarly, VT1 mimics the protective effect of ACP in a murine metastatic fibrosarcoma model. Prior immunization with VT1 B subunit prevents the effect of VT1 or ACP in this model. The activity of ACP against a variety of human ovarian cell lines was mimicked by VT1, and multidrug-resistant variants were significantly hypersensitive. Primary ovarian tumors and metastases contain elevated levels of globotriaosylceramide compared with normal ovaries, and overlay of frozen tumor sections showed selective VT binding to tumor tissue and the lumen of invading blood vessels. Our contention that VT1 could provide an additional approach to the management of certain human neoplasms is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multirresistência bacteriana tem crescido significativamente nos últimos anos. Entre os gram negativos a P. aeruginosa demonstra facilidade de desenvolvimento de resistência aos antibióticos. O objetivo deste estudo foi determinar a frequência de resistência a múltiplos fármacos em isolados de Pseudomonas aeruginosa e detectar cepas multirresistentes em um hospital público de Maceió/AL. De forma retrospectiva, descritiva e transversal, entre janeiro de 2012 a dezembro de 2013, iniciou-se uma ampla análise documental dos registros de atendimento no setor de Microbiologia do Hospital Universitário Professor Alberto Antunes (HUPAA/UFAL) para avaliar o material obtido de pacientes que apresentaram cultura positiva para P. aeruginosa. Vários espécimes clínicos foram obtidos e as cepas identificadas fenotipicamente pelo método automatizado Vitek®, bem como as análises do perfil de susceptibilidade aos antimicrobianos, seguindo os critérios adotados pelo National Committee for Clinical and Laboratory Standards (NCCLS). Foram obtidas 78 culturas com isolados positivos para P. aeruginosa, sendo a maioria procedente de pacientes da UTI geral (47,4%), seguida da Clínica cirúrgica (16,7%). Entre as amostras clínicas analisadas, a secreção traqueal foi a de maior incidência com 25,6%, seguida de secreção de ferida (20,5%) e escarro (18%). O composto mais ativo contra a P. aeruginosa foi a Colistina (100,0%). Detectou-se elevada multirresistência de P. aeruginosa aos betalactâmicos, cefalosporinas e carbapenêmicos. Baseando-se nos dados apresentados, torna-se evidente a necessidade de um monitoramento rotineiro do perfil de sensibilidade desta bactéria em ambiente hospitalar, sendo de extrema utilidade para a escolha adequada na terapêutica empírica, proporcionando conhecimento prévio dos antimicrobianos que apresentam boa eficácia diante deste patógeno, favorecendo o uso racional de antimicrobianos. PALAVRAS-CHAVE: Multirresistência; Pseudomonas aeruginosa;Sensibilidade; Antimicrobianos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hyperthermia is usually used at a sub-lethal level in cancer treatment to potentiate the effects of chemotherapy. The purpose of this study is to investigate the role of heating rate in achieving synergistic cell killing by chemotherapy and hyperthermia. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. The cytotoxicity, mode of cell death, induction of thermal tolerance and P-gp mediated MDR following the two different modes of heating were studied. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. A slow rate hyperthermia was provided by a cell culture incubator. The results show that the potentiating effect of hyperthermia to chemotherapy can be maximized by increasing the rate of heating as evident by the results from the cytotoxicity assay. When delivered at the same thermal dose, a rapid increase in temperature from 37°C to 43°C caused more cell membrane damage than gradually heating the cells from 37°C to 43°C and thus allowed for more intracellular accumulation of the chemotherapeutic agents. Different modes of cell death are observed by the two hyperthermia delivery methods. The rapid rate laser-ICG hyperthermia @ 43°C caused cell necrosis whereas the slow rate incubator hyperthermia @ 43°C induced very mild apoptosis. At 43°C a positive correlation between thermal tolerance and the length of hyperthermia exposure is identified. This study shows that by increasing the rate of heating, less thermal dose is needed in order to overcome P-gp mediated MDR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: The production of KPC (Klebsiella pneumoniae carbapenemase) has become an important mechanism of carbapenem-resistance among Enterobacteriaceae strains. In Brazil, KPC is already widespread and its incidence has increased significantly, reducing treatment options. The “perfect storm” combination of the absence of new drug developmentand the emergence of multidrug-resistant strains resulted in the need for the use of older drugs, with greater toxicity, such as polymyxins. Aims: To determine the occurrence of carbapenemase-producing strains in carbapenem-resistant Enterobacteriaceae isolated from patients with nosocomial infection/colonization during September/2014 to August/2015, to determine the risk factors associated with 30-day- mortality and the impact of inappropriate therapy. Materials and Methods: We performed a case control study to assess the risk factors (comorbidities, invasive procedures and inappropriate antimicrobial therapy) associated with 30-day-mortality, considering the first episode of infection in 111 patients. The resistance genes blaKPC, blaIMP, blaVIM and blaNDM-1 were detected by polymerase chain reaction technique. Molecular typing of the strains involved in the outbreak was performed by pulsed field gel electrophoresis technique. The polymyxin resistance was confirmed by the microdilution broth method. Results: 188 episodes of carbapenem-resistant Enterobacteriaceae infections/colonizations were detected; of these, 122 strains were recovered from the hospital laboratory. The presence of blaKPC gene were confirmed in the majority (74.59%) of these isolates. It was not found the presence of blaIMP , blaVIM and blaNDM-1 genes. K. pneumoniae was the most frequent microorganism (77,13%), primarily responsible for urinary tract infections (21,38%) and infections from patients of the Intensive Care Unit (ICU) (61,38%). Multivariate statistical analysis showed as predictors independently associated with mortality: dialysis and bloodstream infection. The Kaplan-Meier curve showed a lower probability of survival in the group of patients receiving antibiotic therapy inappropriately. Antimicrobial use in adult ICU varied during the study period, but positive correlation between increased incidence of strains and the consumption was not observed. In May and July 2015, the occurrence rates of carbapenem-resistant Enterobacteriaceae KPC-producing per 1000 patient-days were higher than the control limit established, confirming two outbreaks, the first caused by colistin-susceptible KPC-producing K. pneumoniae isolates, with a polyclonal profile and the second by a dominant clone of colistin-resistant (≥ 32 μg/mL) KPC-producing K. pneumoniae. The cross transmission between patients became clear by the temporal and spatial relationships observed in the second outbreak, since some patients occupied the same bed, showing problems in hand hygiene adherence among healthcare workers and inadequate terminal disinfection of environment. The outbreak was contained when the ICU was closed to new admissions. Conclusions: The study showed an endemicity of K. pneumoniae KPC-producing in adult ICU, progressing to an epidemic monoclonal expansion, resulted by a very high antibiotic consumption of carbapenems and polymyxins and facilitated by failures in control measures the unit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advances in neonatology resulted in reducing the mortality rate and the consequent increase in survival of newborn pre terms (PTN). On the other hand, there was also a considerable increase in the risk of developing health care-related infection (HAI) in its most invasive, especially for bloodstream. This situation is worrying, and prevent the occurrence of it is a challenge and becomes one of the priorities in the Neonatal Intensive Care Unit (NICU). Sepsis is the main cause of death in critical neonates and affects more than one million newborns each year, representing 40% of all deaths in neonates. The incidence of late sepsis can reach 50% in NICUs. Currently the major responsible for the occurrence of sepsis in developed countries is the coagulase negative Staphylococcus (CoNS), followed by S. aureus. The cases of HAIs caused by resistant isolates for major classes of antimicrobial agents have been increasingly frequent in the NICU. Therefore, vancomycin has to be prescribed more frequently, and, today, the first option in the treatment of bloodstream infections by resistant Staphylococcus. The objectives of this study were to assess the impact on late sepsis in epidemiology III NICU after the change of the use of antimicrobials protocol; check the frequency of multiresistant microorganisms; assess the number of neonates who came to death. This study was conducted in NICU Level III HC-UFU. three study groups were formed based on the use of the proposed late sepsis treatment protocol, with 216 belonging to the period A, 207 B and 209 to the C. The work was divided into three stages: Period A: data collected from neonates admitted to the unit between September 2010 to August 2011. was using treatment of late sepsis: with oxacillin and gentamicin, oxacillin and amikacin, oxacillin and cefotaxime. Period B: data were collected from March 2012 to February 2013. Data collection was started six months after protocol change. Due to the higher prevalence of CoNS, the initial protocol was changed to vancomycin and cefotaxime. Period C: data were collected from newborns inteerne in the unit from September 2013 to August 2014. Data collection was started six months after the protocol change, which occurred in March 2013. From the 632 neonates included in this study, 511 (80,8%) came from the gynecology and obstetrics department of the HC-UFU. The mean gestational age was 33 weeks and the prevailing sex was male (55,7%). Seventy-nine percent of the studied neonates were hospitalized at the NICU HC-UFU III because of complications related to the respiratory system. Suspicion of sepsis took to hospitalization in the unit of 1,9% of newborns. In general, the infection rate was 34,5%, and the most frequent infectious sepsis syndrome 81,2%. There was a tendency to reduce the number of neonates who died between periods A 11 and C (p = 0,053). From the 176 cases of late sepsis, 73 were clinical sepsis and 103 had laboratory confirmation, with greater representation of Gram positive bacteria, which corresponded to 67.2% of the isolates and CoNS the most frequent micro-organism (91,5%). There was a statistically significant difference in the reduction of isolation of Gram positive microorganisms between periods A and C (p = 0,0365) as well as in reducing multidrug-resistant CoNS (A and B period p = 0,0462 and A and C period, p = 0,158). This study concluded that: the CoNS was the main microorganism responsible for the occurrence of late sepsis in neonates in the NICU of HC-UFU; the main risk factors for the occurrence of late sepsis were: birth weight <1500 g, use of PICC and CUV, need for mechanical ventilation and parenteral nutrition, SNAPPE> 24 and length of stay more than seven days; the new empirical treatment protocol late sepsis, based on the use of vancomycin associated cefepime, it was effective, since promoted a reduction in insulation CoNS blood cultures between the pre and post implementation of the Protocol (A and C, respectively); just as there was a reduction in the number of newborns who evolved to death between periods A and C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colistin, a cationic polypeptide antibiotic, has reappeared in human medicine as a last-line treatment option for multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin is widely used in veterinary medicine for the treatment of gastrointestinal infections caused by Enterobacteriaceae. GNB resistant to colistin owing to chromosomal mutations have already been reported both in human and veterinary medicine, however several recent studies have just identified a plasmid-mediated mcr-1 gene encoding for colistin resistance in Escherichia coli colistin resistance. The discovery of a non-chromosomal mechanism of colistin resistance in E. coli has led to strong reactions in the scientific community and to concern among physicians and veterinarians. Colistin use in food animals and particularly in pig production has been singled out as responsible for the emergence of colistin resistance. The present review will focus mainly on the possible link between colistin use in pigs and the spread of colistin resistance in Enterobacteriaceae. First we demonstrate a possible link between Enterobacteriaceae resistance emergence and oral colistin pharmacokinetics/pharmacodynamics and its administration modalities in pigs. We then discuss the potential impact of colistin use in pigs on public health with respect to resistance. We believe that colistin use in pig production should be re-evaluated and its dosing and usage optimised. Moreover, the search for competitive alternatives to using colistin with swine is of paramount importance to preserve the effectiveness of this antibiotic for the treatment of MDR-GNB infections in human medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colistin, a cationic polypeptide antibiotic, has reappeared in human medicine as a last-line treatment option for multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin is widely used in veterinary medicine for the treatment of gastrointestinal infections caused by Enterobacteriaceae. GNB resistant to colistin owing to chromosomal mutations have already been reported both in human and veterinary medicine, however several recent studies have just identified a plasmid-mediated mcr-1 gene encoding for colistin resistance in Escherichia coli colistin resistance. The discovery of a non-chromosomal mechanism of colistin resistance in E. coli has led to strong reactions in the scientific community and to concern among physicians and veterinarians. Colistin use in food animals and particularly in pig production has been singled out as responsible for the emergence of colistin resistance. The present review will focus mainly on the possible link between colistin use in pigs and the spread of colistin resistance in Enterobacteriaceae. First we demonstrate a possible link between Enterobacteriaceae resistance emergence and oral colistin pharmacokinetics/pharmacodynamics and its administration modalities in pigs. We then discuss the potential impact of colistin use in pigs on public health with respect to resistance. We believe that colistin use in pig production should be re-evaluated and its dosing and usage optimised. Moreover, the search for competitive alternatives to using colistin with swine is of paramount importance to preserve the effectiveness of this antibiotic for the treatment of MDR-GNB infections in human medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. This study compares the antimicrobial susceptibility of 153 P. aeruginosa isolates from the United Kingdom (UK) (n=58), Belgium (n=44), and Germany (n=51) collected from 120 patients during routine visits over the 2006-2012 period. MICs were measured by broth microdilution. Genes encoding extended spectrum β-lactamases (ESBL), metallo-β-lactamases and carbapenemases were detected by PCR. Pulsed Field Gel Electrophoresis and Multi-Locus Sequence Typing were performed on isolates resistant to ≥ 3 antibiotic classes among penicillins/cephalosporins, carbapenems, fluoroquinolones, aminoglycosides, polymyxins. Based on EUCAST/CLSI breakpoints, susceptibility was ≤ 30%/≤ 40% (penicillins, ceftazidime, amikacin, ciprofloxacin), 44-48%/48-63% (carbapenems), 72%/72% (tobramycin), and 92%/78% (colistin) independently of patient's age. Sixty percent of strains were multidrug resistant (MDR; European Centre for Disease prevention and Control criteria). Genes encoding ESBL (most prevalent BEL, PER, GES, VEB, CTX-M, TEM, SHV, and OXA), metallo β-lactamases (VIM, IMP, NDM), or carbapenemases (OXA-48, KPC) were not detected. The Liverpool Epidemic Strain (LES) was prevalent in UK isolates only (75% of MDR isolates). Four MDR ST958 isolates were found spread over the three countries. The other MDR clones were evidenced in ≤ 3 isolates and localized in a single country. A new sequence type (ST2254) was discovered in one MDR isolate in Germany. Clonal and non-clonal isolates with different susceptibility profiles were found in 21 patients. Thus, resistance and MDR are highly prevalent in routine isolates from 3 countries, with carbapenem (meropenem), tobramycin and colistin remaining the most active drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7%) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7% - 49.5% identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin and spanins) and shows 29-98% homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60°C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest the AP3 phage is a promising potent agent against bacteria belonging to most common B. cenocepacia IIIA lineage strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their antioxidant, antitumoral and antimicrobial activities. In this study, the chemical composition of lipophilic and phenolic fractions of C. cardunculus L. var. altilis (DC), cultivated in the south of Portugal (Baixo Alentejo region) was characterized in detail, intending the integral valorization of its biomass. The biological activity of cultivated cardoon extracts was evaluated in terms of antioxidant, human tumor cell antiproliferative and antibacterial effects. Gas chromatography-mass spectrometry (GC-MS) was used for the chemical analysis of lipophilic compounds. Sixty-five lipophilic compounds were identified, from which 1 sesquiterpene lactone and 4 pentacyclic triterpenes were described, for the first time, as cultivated cardoon components, such as: deacylcynaropicrin, acetates of β- and α-amyrin, lupenyl acetate and ψ-taraxasteryl acetate. Sesquiterpene lactones were the major family of lipophilic components of leaves (≈94.5 g/kg), mostly represented by cynaropicrin (≈87.4 g/kg). Pentacyclic triterpenes were also detected, in considerably high contents, in the remaining parts of cultivated cardoon, especially in the florets (≈27.5 g/kg). Taraxasteryl acetate was the main pentacyclic triterpene (≈8.9 g/kg in florets). High pressure liquid chromatography-mass spectrometry (HPLC-MS) was utilized for the chemical analysis of phenolic compounds. Among the identified 28 phenolic compounds, eriodictyol hexoside was reported for the first time as C. cardunculus L. component, and 6 as cultivated cardoon components, namely 1,4-di-O-caffeoylquinic acid, naringenin 7-O-glucoside, naringenin rutinoside, naringenin, luteolin acetylhexoside and apigenin acetylhexoside. The highest content of the identified phenolic compounds was observed in the florets (≈12.6 g/kg). Stalks outer part contained the highest hydroxycinnamic acids abundance (≈10.3 g/kg), and florets presented the highest flavonoids content (≈10.3 g/kg). The antioxidant activity of phenolic fraction was examined through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Stalks outer part, and receptacles and bracts extracts demonstrated the highest antioxidant effect on DPPH (IC50 of 34.35 μg/mL and 35.25 μg/mL, respectively). (cont.) abstract (cont.) The DPPH scavenging effect was linearly correlated with the total contents of hydroxycinnamic acids (r = -0.990). The in vitro antiproliferative activity of cultivated cardoon lipophilic and phenolic extracts was evaluated on a human tumor cells line of triple-negative breast cancer (MDA-MB-231), one of the most refractory human cancers to conventional therapeutics. After 48 h of exposition, leaves lipophilic extract showed higher inhibitory effect (IC50 = 10.39 μg/mL) than florets lipophilic extract (IC50 = 315.22 μg/mL), upon MDA-MB-231 cellular viability. Pure compound of cynaropicrin, representative of the main compound identified in leaves lipophilic extract, also prevented the cell proliferation of MDA-MB-231 (IC50 = 17.86 μM). MDA-MB-231 cells were much more resistant to the 48 h- treatment with phenolic extracts of stalks outer part (IC50 = 3341.20 μg/mL) and florets (IC50 > 4500 μg/mL), and also with the pure compound of 1,5-di-O-caffeoylquinic acid (IC50 = 1741.69 μM). MDA-MB-231 cells were exposed, for 48 h, to the respective IC50 concentrations of leaves lipophilic extract and pure compound of cynaropicrin, in order to understand their ability in modelling cellular responses, and consequently important potentially signaling pathways for the cellular viability decrease. Leaves lipophilic extract increased the caspase-3 enzymatic activity, contrarily to pure compound of cynaropicrin. Additionally, leaves lipophilic extract and pure compound of cynaropicrin caused G2 cell cycle arrest, possibly by upregulating the p21Waf1/Cip1 and the accumulation of phospho-Tyr15-CDK1 and cyclin B1. The inhibitory effects of leaves lipophilic extract and cynaropicrin pure compound, against the MDA-MB-231 cell proliferation, may also be related to the downregulation of phospho-Ser473-Akt. The antibacterial activity of cultivated cardoon lipophilic and phenolic extracts was assessed, for the first time, on two multidrug-resistant bacteria, such as the Gram-negative Pseudomonas aeruginosa PAO1 and the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), two of the main bacteria responsible for health care-associated infections. Accordingly, the minimum inhibitory concentrations (MIC) were determined. Lipophilic and phenolic extracts of florets did not have antibacterial activity on P. aeruginosa PAO1 and MRSA (MIC > 2048 μg/mL). Leaves lipophilic extract did not prevent the P. aeruginosa PAO1 growth, but pure compound of cynaropicrin was slightly active (MIC = 2048 μg/mL). Leaves lipophilic extract and pure compound of cynaropicrin blocked MRSA growth (MIC of 1024 and 256 μg/mL, respectively). The scientific knowledge revealed in this thesis, either by the chemical viewpoint, or by the biological viewpoint, contributes for the valorization of C. cardunculus L. var. altilis (DC) biomass. Cultivated cardoon has potential to be exploited as source of bioactive compounds, in conciliation with other valorization pathways, and Portuguese traditional cheeses manufacturing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial infections, especially the ones that are caused by multidrug-resistant strains, are becoming increasingly difficult to treat and put enormous stress on healthcare systems. Recently President Obama announced a new initiative to combat the growing problem of antibiotic resistance. New types of antibiotic drugs are always in need to catch up with the rapid speed of bacterial drug-resistance acquisition. Bacterial second messengers, cyclic dinucleotides, play important roles in signal transduction and therefore are currently generating great buzz in the microbiology community because it is believed that small molecules that inhibit cyclic dinucleotide signaling could become next-generation antibacterial agents. The first identified cyclic dinucleotide, c-di-GMP, has now been shown to regulate a large number of processes, such as virulence, biofilm formation, cell cycle, quorum sensing, etc. Recently, another cyclic dinucleotide, c-di-AMP, has emerged as a regulator of key processes in Gram-positive and mycobacteria. C-di-AMP is now known to regulate DNA damage sensing, fatty acid synthesis, potassium ion transport, cell wall homeostasis and host type I interferon response induction. Due to the central roles that cyclic dinucleotides play in bacteria, we are interested in small molecules that intercept cyclic dinucleotide signaling with the hope that these molecules would help us learn more details about cyclic dinucleotide signaling or could be used to inhibit bacterial viability or virulence. This dissertation documents the development of several small molecule inhibitors of a cyclic dinucleotide synthase (DisA from B. subtilis) and phosphodiesterases (RocR from P. aeruginosa and CdnP from M. tuberculosis). We also demonstrate that an inhibitor of RocR PDE can inhibit bacterial swarming motility, which is a virulence factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global Network for the Molecular Surveillance of Tuberculosis 2010: A. Miranda (Tuberculosis Laboratory of the National Institute of Health, Porto, Portugal)