859 resultados para Multi-objective optimization problem
Resumo:
Water distribution networks optimization is a challenging problem due to the dimension and the complexity of these systems. Since the last half of the twentieth century this field has been investigated by many authors. Recently, to overcome discrete nature of variables and non linearity of equations, the research has been focused on the development of heuristic algorithms. This algorithms do not require continuity and linearity of the problem functions because they are linked to an external hydraulic simulator that solve equations of mass continuity and of energy conservation of the network. In this work, a NSGA-II (Non-dominating Sorting Genetic Algorithm) has been used. This is a heuristic multi-objective genetic algorithm based on the analogy of evolution in nature. Starting from an initial random set of solutions, called population, it evolves them towards a front of solutions that minimize, separately and contemporaneously, all the objectives. This can be very useful in practical problems where multiple and discordant goals are common. Usually, one of the main drawback of these algorithms is related to time consuming: being a stochastic research, a lot of solutions must be analized before good ones are found. Results of this thesis about the classical optimal design problem shows that is possible to improve results modifying the mathematical definition of objective functions and the survival criterion, inserting good solutions created by a Cellular Automata and using rules created by classifier algorithm (C4.5). This part has been tested using the version of NSGA-II supplied by Centre for Water Systems (University of Exeter, UK) in MATLAB® environment. Even if orientating the research can constrain the algorithm with the risk of not finding the optimal set of solutions, it can greatly improve the results. Subsequently, thanks to CINECA help, a version of NSGA-II has been implemented in C language and parallelized: results about the global parallelization show the speed up, while results about the island parallelization show that communication among islands can improve the optimization. Finally, some tests about the optimization of pump scheduling have been carried out. In this case, good results are found for a small network, while the solutions of a big problem are affected by the lack of constraints on the number of pump switches. Possible future research is about the insertion of further constraints and the evolution guide. In the end, the optimization of water distribution systems is still far from a definitive solution, but the improvement in this field can be very useful in reducing the solutions cost of practical problems, where the high number of variables makes their management very difficult from human point of view.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are responsible of selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-tasks distribution problem and we propose a solution using two different approaches by applying Ant Colony Optimization-based deterministic algorithms as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithm, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Resumo:
A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^
Resumo:
This paper deals with an efficient hybrid evolutionary optimization algorithm in accordance with combining the ant colony optimization (ACO) and the simulated annealing (SA), so called ACO-SA. The distribution feeder reconfiguration (DFR) is known as one of the most important control schemes in the distribution networks, which can be affected by distributed generations (DGs) for the multi-objective DFR. In such a case, DGs is used to minimize the real power loss, the deviation of nodes voltage and the number of switching operations. The approach is carried out on a real distribution feeder, where the simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving the DFR problem.
Resumo:
Guaranteeing Quality of Service (QoS) with minimum computation cost is the most important objective of cloud-based MapReduce computations. Minimizing the total computation cost of cloud-based MapReduce computations is done through MapReduce placement optimization. MapReduce placement optimization approaches can be classified into two categories: homogeneous MapReduce placement optimization and heterogeneous MapReduce placement optimization. It is generally believed that heterogeneous MapReduce placement optimization is more effective than homogeneous MapReduce placement optimization in reducing the total running cost of cloud-based MapReduce computations. This paper proposes a new approach to the heterogeneous MapReduce placement optimization problem. In this new approach, the heterogeneous MapReduce placement optimization problem is transformed into a constrained combinatorial optimization problem and is solved by an innovative constructive algorithm. Experimental results show that the running cost of the cloud-based MapReduce computation platform using this new approach is 24:3%-44:0% lower than that using the most popular homogeneous MapReduce placement approach, and 2:0%-36:2% lower than that using the heterogeneous MapReduce placement approach not considering the spare resources from the existing MapReduce computations. The experimental results have also demonstrated the good scalability of this new approach.
Resumo:
The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.
Resumo:
This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three- dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used.
Resumo:
There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.
Resumo:
Trajectory optimization of a generic launch vehicle is considered in this paper. The trajectory from launch point to terminal injection point is divided in to two segments. The first segment deals with launcher clearance and vertical raise of the vehicle. During this phase, a nonlinear feedback guidance loop is incorporated to assure vertical raise in presence of thrust misalignment, centre of gravity offset, wind disturbance etc. and possibly to clear obstacles as well. The second segment deals with the trajectory optimization, where the objective is to ensure desired terminal conditions as well as minimum control effort and minimum structural loading in the high dynamic pressure region. The usefulness of this dynamic optimization problem formulation is demonstrated by solving it using the classical Gradient method. Numerical results for both the segments are presented, which clearly brings out the potential advantages of the proposed approach.
Resumo:
The topology optimization problem for the synthesis of compliant mechanisms has been formulated in many different ways in the last 15 years, but there is not yet a definitive formulation that is universally accepted. Furthermore, there are two unresolved issues in this problem. In this paper, we present a comparative study of five distinctly different formulations that are reported in the literature. Three benchmark examples are solved with these formulations using the same input and output specifications and the same numerical optimization algorithm. A total of 35 different synthesis examples are implemented. The examples are limited to desired instantaneous output direction for prescribed input force direction. Hence, this study is limited to linear elastic modeling with small deformations. Two design parameterizations, namely, the frame element based ground structure and the density approach using continuum elements, are used. The obtained designs are evaluated with all other objective functions and are compared with each other. The checkerboard patterns, point flexures, the ability to converge from an unbiased uniform initial guess, and the computation time are analyzed. Some observations are noted based on the extensive implementation done in this study. Complete details of the benchmark problems and the results are included. The computer codes related to this study are made available on the internet for ready access.
Resumo:
Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
We use information theoretic achievable rate formulas for the multi-relay channel to study the problem of optimal placement of relay nodes along the straight line joining a source node and a destination node. The achievable rate formulas that we utilize are for full-duplex radios at the relays and decode-and-forward relaying. For the single relay case, and individual power constraints at the source node and the relay node, we provide explicit formulas for the optimal relay location and the optimal power allocation to the source-relay channel, for the exponential and the power-law path-loss channel models. For the multiple relay case, we consider exponential path-loss and a total power constraint over the source and the relays, and derive an optimization problem, the solution of which provides the optimal relay locations. Numerical results suggest that at low attenuation the relays are mostly clustered close to the source in order to be able to cooperate among themselves, whereas at high attenuation they are uniformly placed and work as repeaters. We also prove that a constant rate independent of the attenuation in the network can be achieved by placing a large enough number of relay nodes uniformly between the source and the destination, under the exponential path-loss model with total power constraint.
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
Routing is a very important step in VLSI physical design. A set of nets are routed under delay and resource constraints in multi-net global routing. In this paper a delay-driven congestion-aware global routing algorithm is developed, which is a heuristic based method to solve a multi-objective NP-hard optimization problem. The proposed delay-driven Steiner tree construction method is of O(n(2) log n) complexity, where n is the number of terminal points and it provides n-approximation solution of the critical time minimization problem for a certain class of grid graphs. The existing timing-driven method (Hu and Sapatnekar, 2002) has a complexity O(n(4)) and is implemented on nets with small number of sinks. Next we propose a FPTAS Gradient algorithm for minimizing the total overflow. This is a concurrent approach considering all the nets simultaneously contrary to the existing approaches of sequential rip-up and reroute. The algorithms are implemented on ISPD98 derived benchmarks and the drastic reduction of overflow is observed. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.