1000 resultados para Modèle de données
Resumo:
Découverts en 1993 dans Caenorhabditis elegans, les microARNs sont une nouvelle famille¦de molécules, simples brin d'ARN non-codant d'environ 20 nucléotides. Ce sont des régulateurs,¦capables d'inhiber l'expression de gènes dans les cellules eucaryotes. Ils jouent un rôle dans¦d'importants processus comme la prolifération cellulaire, l'apoptose, l'inflammation, et la¦différenciation tissulaire. C'est pour cela que des variations de la quantité de microARNs dans le¦corps humain peuvent engendrer diverses maladies comme le diabète, le cancer et différentes¦pathologies cardiovasculaires. Dans le futur, une meilleure compréhension des microARNs et de¦leurs mécanismes d'action pourrait aider à découvrir de nouveaux outils pour traiter ou prévenir¦certaines maladies. Les objectifs de ce travail étaient de faire une recherche de¦littérature sur les microARNs et leurs implications dans le diabète dans un premier temps, puis de¦poursuivre avec des manipulations de laboratoire pour mesurer l'activité et la fonction de¦microARNs dans la cellule bêta pancréatique dans le modèle de la gestation. La méthode utilisée¦pour l'étude bibliographique a été une recherche sur la base de données Pubmed. Pour les¦manipulations au laboratoire, deux microARNs ont été étudiés miR-325-5p et miR-874, afin¦d'évaluer l'impact de la surexpression ou le knock down de ces deux microARNs sur les fonctions¦de cellules bêta pancréatiques comme la prolifération et l'apoptose. Ces techniques étaient¦parfaitement au point dans le laboratoire d'accueil. En ce qui me concerne, ce travail m'a permis¦d'approfondir mes connaissances sur un sujet nouveau et de mettre un pied dans le milieu de la¦recherche fondamentale.
Resumo:
Cet article présente une pratique de consultation psychanalytique développée par des psychologues tra- vaillant en milieux éducatifs et pédagogiques. Les auteurs se réfèrent à des concepts issus de l'école de psychanalyse britannique de la relation d'objet pour monter comment le processus de «présence théra- peutique » peut améliorer et enrichir les interventions en milieu scolaire. Les bénéfices engendrés par une « présence thérapeutique » sur les lieux scolaires et éducatifs et les défis rencontrés seront discutés. Des illustrations cliniques ainsi que des exemples issus de notre pratique avec les enfants, leur famille et les professionnels de l'enfance, que ce soit dans les écoles primaires et secondaires, les garderies, les services spécialisés ou les lieux de formation serviront d'illustration des concepts théoriques présentés.
Resumo:
La présente étude est à la fois une évaluation du processus de la mise en oeuvre et des impacts de la police de proximité dans les cinq plus grandes zones urbaines de Suisse - Bâle, Berne, Genève, Lausanne et Zurich. La police de proximité (community policing) est à la fois une philosophie et une stratégie organisationnelle qui favorise un partenariat renouvelé entre la police et les communautés locales dans le but de résoudre les problèmes relatifs à la sécurité et à l'ordre public. L'évaluation de processus a analysé des données relatives aux réformes internes de la police qui ont été obtenues par l'intermédiaire d'entretiens semi-structurés avec des administrateurs clés des cinq départements de police, ainsi que dans des documents écrits de la police et d'autres sources publiques. L'évaluation des impacts, quant à elle, s'est basée sur des variables contextuelles telles que des statistiques policières et des données de recensement, ainsi que sur des indicateurs d'impacts construit à partir des données du Swiss Crime Survey (SCS) relatives au sentiment d'insécurité, à la perception du désordre public et à la satisfaction de la population à l'égard de la police. Le SCS est un sondage régulier qui a permis d'interroger des habitants des cinq grandes zones urbaines à plusieurs reprises depuis le milieu des années 1980. L'évaluation de processus a abouti à un « Calendrier des activités » visant à créer des données de panel permettant de mesurer les progrès réalisés dans la mise en oeuvre de la police de proximité à l'aide d'une grille d'évaluation à six dimensions à des intervalles de cinq ans entre 1990 et 2010. L'évaluation des impacts, effectuée ex post facto, a utilisé un concept de recherche non-expérimental (observational design) dans le but d'analyser les impacts de différents modèles de police de proximité dans des zones comparables à travers les cinq villes étudiées. Les quartiers urbains, délimités par zone de code postal, ont ainsi été regroupés par l'intermédiaire d'une typologie réalisée à l'aide d'algorithmes d'apprentissage automatique (machine learning). Des algorithmes supervisés et non supervisés ont été utilisés sur les données à haute dimensionnalité relatives à la criminalité, à la structure socio-économique et démographique et au cadre bâti dans le but de regrouper les quartiers urbains les plus similaires dans des clusters. D'abord, les cartes auto-organisatrices (self-organizing maps) ont été utilisées dans le but de réduire la variance intra-cluster des variables contextuelles et de maximiser simultanément la variance inter-cluster des réponses au sondage. Ensuite, l'algorithme des forêts d'arbres décisionnels (random forests) a permis à la fois d'évaluer la pertinence de la typologie de quartier élaborée et de sélectionner les variables contextuelles clés afin de construire un modèle parcimonieux faisant un minimum d'erreurs de classification. Enfin, pour l'analyse des impacts, la méthode des appariements des coefficients de propension (propensity score matching) a été utilisée pour équilibrer les échantillons prétest-posttest en termes d'âge, de sexe et de niveau d'éducation des répondants au sein de chaque type de quartier ainsi identifié dans chacune des villes, avant d'effectuer un test statistique de la différence observée dans les indicateurs d'impacts. De plus, tous les résultats statistiquement significatifs ont été soumis à une analyse de sensibilité (sensitivity analysis) afin d'évaluer leur robustesse face à un biais potentiel dû à des covariables non observées. L'étude relève qu'au cours des quinze dernières années, les cinq services de police ont entamé des réformes majeures de leur organisation ainsi que de leurs stratégies opérationnelles et qu'ils ont noué des partenariats stratégiques afin de mettre en oeuvre la police de proximité. La typologie de quartier développée a abouti à une réduction de la variance intra-cluster des variables contextuelles et permet d'expliquer une partie significative de la variance inter-cluster des indicateurs d'impacts avant la mise en oeuvre du traitement. Ceci semble suggérer que les méthodes de géocomputation aident à équilibrer les covariables observées et donc à réduire les menaces relatives à la validité interne d'un concept de recherche non-expérimental. Enfin, l'analyse des impacts a révélé que le sentiment d'insécurité a diminué de manière significative pendant la période 2000-2005 dans les quartiers se trouvant à l'intérieur et autour des centres-villes de Berne et de Zurich. Ces améliorations sont assez robustes face à des biais dus à des covariables inobservées et covarient dans le temps et l'espace avec la mise en oeuvre de la police de proximité. L'hypothèse alternative envisageant que les diminutions observées dans le sentiment d'insécurité soient, partiellement, un résultat des interventions policières de proximité semble donc être aussi plausible que l'hypothèse nulle considérant l'absence absolue d'effet. Ceci, même si le concept de recherche non-expérimental mis en oeuvre ne peut pas complètement exclure la sélection et la régression à la moyenne comme explications alternatives. The current research project is both a process and impact evaluation of community policing in Switzerland's five major urban areas - Basel, Bern, Geneva, Lausanne, and Zurich. Community policing is both a philosophy and an organizational strategy that promotes a renewed partnership between the police and the community to solve problems of crime and disorder. The process evaluation data on police internal reforms were obtained through semi-structured interviews with key administrators from the five police departments as well as from police internal documents and additional public sources. The impact evaluation uses official crime records and census statistics as contextual variables as well as Swiss Crime Survey (SCS) data on fear of crime, perceptions of disorder, and public attitudes towards the police as outcome measures. The SCS is a standing survey instrument that has polled residents of the five urban areas repeatedly since the mid-1980s. The process evaluation produced a "Calendar of Action" to create panel data to measure community policing implementation progress over six evaluative dimensions in intervals of five years between 1990 and 2010. The impact evaluation, carried out ex post facto, uses an observational design that analyzes the impact of the different community policing models between matched comparison areas across the five cities. Using ZIP code districts as proxies for urban neighborhoods, geospatial data mining algorithms serve to develop a neighborhood typology in order to match the comparison areas. To this end, both unsupervised and supervised algorithms are used to analyze high-dimensional data on crime, the socio-economic and demographic structure, and the built environment in order to classify urban neighborhoods into clusters of similar type. In a first step, self-organizing maps serve as tools to develop a clustering algorithm that reduces the within-cluster variance in the contextual variables and simultaneously maximizes the between-cluster variance in survey responses. The random forests algorithm then serves to assess the appropriateness of the resulting neighborhood typology and to select the key contextual variables in order to build a parsimonious model that makes a minimum of classification errors. Finally, for the impact analysis, propensity score matching methods are used to match the survey respondents of the pretest and posttest samples on age, gender, and their level of education for each neighborhood type identified within each city, before conducting a statistical test of the observed difference in the outcome measures. Moreover, all significant results were subjected to a sensitivity analysis to assess the robustness of these findings in the face of potential bias due to some unobserved covariates. The study finds that over the last fifteen years, all five police departments have undertaken major reforms of their internal organization and operating strategies and forged strategic partnerships in order to implement community policing. The resulting neighborhood typology reduced the within-cluster variance of the contextual variables and accounted for a significant share of the between-cluster variance in the outcome measures prior to treatment, suggesting that geocomputational methods help to balance the observed covariates and hence to reduce threats to the internal validity of an observational design. Finally, the impact analysis revealed that fear of crime dropped significantly over the 2000-2005 period in the neighborhoods in and around the urban centers of Bern and Zurich. These improvements are fairly robust in the face of bias due to some unobserved covariate and covary temporally and spatially with the implementation of community policing. The alternative hypothesis that the observed reductions in fear of crime were at least in part a result of community policing interventions thus appears at least as plausible as the null hypothesis of absolutely no effect, even if the observational design cannot completely rule out selection and regression to the mean as alternative explanations.
Resumo:
The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.
Resumo:
Summary Ecotones are sensitive to change because they contain high numbers of species living at the margin of their environmental tolerance. This is equally true of tree-lines, which are determined by attitudinal or latitudinal temperature gradients. In the current context of climate change, they are expected to undergo modifications in position, tree biomass and possibly species composition. Attitudinal and latitudinal tree-lines differ mainly in the steepness of the underlying temperature gradient: distances are larger at latitudinal tree-lines, which could have an impact on the ability of tree species to migrate in response to climate change. Aside from temperature, tree-lines are also affected on a more local level by pressure from human activities. These are also changing as a consequence of modifications in our societies and may interact with the effects of climate change. Forest dynamics models are often used for climate change simulations because of their mechanistic processes. The spatially-explicit model TreeMig was used as a base to develop a model specifically tuned for the northern European and Alpine tree-line ecotones. For the latter, a module for land-use change processes was also added. The temperature response parameters for the species in the model were first calibrated by means of tree-ring data from various species and sites at both tree-lines. This improved the growth response function in the model, but also lead to the conclusion that regeneration is probably more important than growth for controlling tree-line position and species' distributions. The second step was to implement the module for abandonment of agricultural land in the Alps, based on an existing spatial statistical model. The sensitivity of its most important variables was tested and the model's performance compared to other modelling approaches. The probability that agricultural land would be abandoned was strongly influenced by the distance from the nearest forest and the slope, bath of which are proxies for cultivation costs. When applied to a case study area, the resulting model, named TreeMig-LAb, gave the most realistic results. These were consistent with observed consequences of land-abandonment such as the expansion of the existing forest and closing up of gaps. This new model was then applied in two case study areas, one in the Swiss Alps and one in Finnish Lapland, under a variety of climate change scenarios. These were based on forecasts of temperature change over the next century by the IPCC and the HadCM3 climate model (ΔT: +1.3, +3.5 and +5.6 °C) and included a post-change stabilisation period of 300 years. The results showed radical disruptions at both tree-lines. With the most conservative climate change scenario, species' distributions simply shifted, but it took several centuries reach a new equilibrium. With the more extreme scenarios, some species disappeared from our study areas (e.g. Pinus cembra in the Alps) or dwindled to very low numbers, as they ran out of land into which they could migrate. The most striking result was the lag in the response of most species, independently from the climate change scenario or tree-line type considered. Finally, a statistical model of the effect of reindeer (Rangifer tarandus) browsing on the growth of Pinus sylvestris was developed, as a first step towards implementing human impacts at the boreal tree-line. The expected effect was an indirect one, as reindeer deplete the ground lichen cover, thought to protect the trees against adverse climate conditions. The model showed a small but significant effect of browsing, but as the link with the underlying climate variables was unclear and the model was not spatial, it was not usable as such. Developing the TreeMig-LAb model allowed to: a) establish a method for deriving species' parameters for the growth equation from tree-rings, b) highlight the importance of regeneration in determining tree-line position and species' distributions and c) improve the integration of social sciences into landscape modelling. Applying the model at the Alpine and northern European tree-lines under different climate change scenarios showed that with most forecasted levels of temperature increase, tree-lines would suffer major disruptions, with shifts in distributions and potential extinction of some tree-line species. However, these responses showed strong lags, so these effects would not become apparent before decades and could take centuries to stabilise. Résumé Les écotones son sensibles au changement en raison du nombre élevé d'espèces qui y vivent à la limite de leur tolérance environnementale. Ceci s'applique également aux limites des arbres définies par les gradients de température altitudinaux et latitudinaux. Dans le contexte actuel de changement climatique, on s'attend à ce qu'elles subissent des modifications de leur position, de la biomasse des arbres et éventuellement des essences qui les composent. Les limites altitudinales et latitudinales diffèrent essentiellement au niveau de la pente des gradients de température qui les sous-tendent les distance sont plus grandes pour les limites latitudinales, ce qui pourrait avoir un impact sur la capacité des espèces à migrer en réponse au changement climatique. En sus de la température, la limite des arbres est aussi influencée à un niveau plus local par les pressions dues aux activités humaines. Celles-ci sont aussi en mutation suite aux changements dans nos sociétés et peuvent interagir avec les effets du changement climatique. Les modèles de dynamique forestière sont souvent utilisés pour simuler les effets du changement climatique, car ils sont basés sur la modélisation de processus. Le modèle spatialement explicite TreeMig a été utilisé comme base pour développer un modèle spécialement adapté pour la limite des arbres en Europe du Nord et dans les Alpes. Pour cette dernière, un module servant à simuler des changements d'utilisation du sol a également été ajouté. Tout d'abord, les paramètres de la courbe de réponse à la température pour les espèces inclues dans le modèle ont été calibrées au moyen de données dendrochronologiques pour diverses espèces et divers sites des deux écotones. Ceci a permis d'améliorer la courbe de croissance du modèle, mais a également permis de conclure que la régénération est probablement plus déterminante que la croissance en ce qui concerne la position de la limite des arbres et la distribution des espèces. La seconde étape consistait à implémenter le module d'abandon du terrain agricole dans les Alpes, basé sur un modèle statistique spatial existant. La sensibilité des variables les plus importantes du modèle a été testée et la performance de ce dernier comparée à d'autres approches de modélisation. La probabilité qu'un terrain soit abandonné était fortement influencée par la distance à la forêt la plus proche et par la pente, qui sont tous deux des substituts pour les coûts liés à la mise en culture. Lors de l'application en situation réelle, le nouveau modèle, baptisé TreeMig-LAb, a donné les résultats les plus réalistes. Ceux-ci étaient comparables aux conséquences déjà observées de l'abandon de terrains agricoles, telles que l'expansion des forêts existantes et la fermeture des clairières. Ce nouveau modèle a ensuite été mis en application dans deux zones d'étude, l'une dans les Alpes suisses et l'autre en Laponie finlandaise, avec divers scénarios de changement climatique. Ces derniers étaient basés sur les prévisions de changement de température pour le siècle prochain établies par l'IPCC et le modèle climatique HadCM3 (ΔT: +1.3, +3.5 et +5.6 °C) et comprenaient une période de stabilisation post-changement climatique de 300 ans. Les résultats ont montré des perturbations majeures dans les deux types de limites de arbres. Avec le scénario de changement climatique le moins extrême, les distributions respectives des espèces ont subi un simple glissement, mais il a fallu plusieurs siècles pour qu'elles atteignent un nouvel équilibre. Avec les autres scénarios, certaines espèces ont disparu de la zone d'étude (p. ex. Pinus cembra dans les Alpes) ou ont vu leur population diminuer parce qu'il n'y avait plus assez de terrains disponibles dans lesquels elles puissent migrer. Le résultat le plus frappant a été le temps de latence dans la réponse de la plupart des espèces, indépendamment du scénario de changement climatique utilisé ou du type de limite des arbres. Finalement, un modèle statistique de l'effet de l'abroutissement par les rennes (Rangifer tarandus) sur la croissance de Pinus sylvestris a été développé, comme première étape en vue de l'implémentation des impacts humains sur la limite boréale des arbres. L'effet attendu était indirect, puisque les rennes réduisent la couverture de lichen sur le sol, dont on attend un effet protecteur contre les rigueurs climatiques. Le modèle a mis en évidence un effet modeste mais significatif, mais étant donné que le lien avec les variables climatiques sous jacentes était peu clair et que le modèle n'était pas appliqué dans l'espace, il n'était pas utilisable tel quel. Le développement du modèle TreeMig-LAb a permis : a) d'établir une méthode pour déduire les paramètres spécifiques de l'équation de croissance ä partir de données dendrochronologiques, b) de mettre en évidence l'importance de la régénération dans la position de la limite des arbres et la distribution des espèces et c) d'améliorer l'intégration des sciences sociales dans les modèles de paysage. L'application du modèle aux limites alpines et nord-européennes des arbres sous différents scénarios de changement climatique a montré qu'avec la plupart des niveaux d'augmentation de température prévus, la limite des arbres subirait des perturbations majeures, avec des glissements d'aires de répartition et l'extinction potentielle de certaines espèces. Cependant, ces réponses ont montré des temps de latence importants, si bien que ces effets ne seraient pas visibles avant des décennies et pourraient mettre plusieurs siècles à se stabiliser.
Resumo:
L'athérosclérose (ATS) est une maladie artérielle inflammatoire chronique à l'origine des nombreuses maladies cardiovasculaires que sont l'infarctus du myocarde, l'accident vasculaire cérébral ou encore l'artériopathie oblitérante des membres inférieurs. L'ATS se définit comme la formation de plaques fibro-lipidiques dans l'intima des artères. Les facteurs de risque majeurs associés à l'ATS sont l'hypertension, l'hypercholestérolémie, le tabagisme, le diabète, la sédentarité, ou encore des prédispositions génétiques. L'ATS peut être asymptomatique durant des années ou alors engendrer des complications aiguës pouvant parfois mettre le pronostic vital en jeu. Les complications les plus graves surviennent principalement lors de la rupture d'une plaque athéromateuse dite vulnérable ou instable. En effet, cette dernière peut se rompre et entraîner la formation d'un thrombus artériel occlusif avec, pour conséquence, l'ischémie/nécrose des tissus en aval. Prévenir le développement de la plaque vulnérable et/ou la « stabiliser » permettrait donc de prévenir les complications cliniques de l'ATS. Cet objectif requiert une connaissance éclairée des mécanismes cellulaires et moléculaires impliqués dans la physiopathologie de l'ATS et de la plaque vulnérable. Les travaux expérimentaux menés au sein du laboratoire du service d'angiologie du CHUV sous la direction du Prof. Lucia Mazzolai ont montré que l'angiotensine II (ang II), produit final de la cascade du système rénine-angiotensine, joue un rôle majeur dans la « vulnérabilité » des plaques athéromateuses (1). Ces travaux ont été réalisés à partir d'un modèle animal original développant des plaques d'ATS vulnérables dépendantes de l'ang II: la souris ApoE-/- 2 reins-1 clip (2K1C). Plus récemment, le laboratoire d'angiologie a mis en évidence une implication directe des leucocytes, plus précisément des macrophages et des lymphocytes T CD4+, dans l'athérogenèse ang II-dépendante (2,3). Dernièrement, des travaux ont également suggéré un rôle possible des granulocytes neutrophiles dans l'ATS (4,5,6,7). Toutefois, les études sont encore limitées de sorte que le rôle exact des neutrophiles dans l'ATS et plus spécialement dans l'ATS induite par l'ang II reste à démontrer. Une des recherches actuelles menée dans le laboratoire est donc d'étudier le rôle des neutrophiles dans le développement de la plaque athéromateuse vulnérable à partir du modèle animal, la souris ApoE-/- 2K1C. Pour évaluer le rôle direct des neutrophiles chez notre modèle animal, nous avons choisi comme méthode la déplétion des neutrophiles circulants par l'utilisation d'un anticorps spécifique. Il a été reporté dans la littérature que l'anticorps monoclonal NIMP-R14 3 permettait de dépléter sélectivement in vivo les neutrophiles dans différents modèles murins (8,9). Cependant, ces études ont utilisé cet anticorps anti-neutrophiles majoritairement sur des périodes expérimentales de durées relativement limitées (12-14 jours) et la question s'est donc posée de savoir si cet anticorps pouvait aussi dépléter les neutrophiles chez notre modèle animal, qui requiert une période expérimentale de 4 semaines pour développer des plaques vulnérables (1). Le but de ce travail a donc été de produire l'anticorps NIMP-R14 et d'évaluer son efficacité chez la souris ApoE-/- 2K1C qui développe des plaque d'ATS vulnérables dépendantes de l'ang II.
Resumo:
With the advancement of high-throughput sequencing and dramatic increase of available genetic data, statistical modeling has become an essential part in the field of molecular evolution. Statistical modeling results in many interesting discoveries in the field, from detection of highly conserved or diverse regions in a genome to phylogenetic inference of species evolutionary history Among different types of genome sequences, protein coding regions are particularly interesting due to their impact on proteins. The building blocks of proteins, i.e. amino acids, are coded by triples of nucleotides, known as codons. Accordingly, studying the evolution of codons leads to fundamental understanding of how proteins function and evolve. The current codon models can be classified into three principal groups: mechanistic codon models, empirical codon models and hybrid ones. The mechanistic models grasp particular attention due to clarity of their underlying biological assumptions and parameters. However, they suffer from simplified assumptions that are required to overcome the burden of computational complexity. The main assumptions applied to the current mechanistic codon models are (a) double and triple substitutions of nucleotides within codons are negligible, (b) there is no mutation variation among nucleotides of a single codon and (c) assuming HKY nucleotide model is sufficient to capture essence of transition- transversion rates at nucleotide level. In this thesis, I develop a framework of mechanistic codon models, named KCM-based model family framework, based on holding or relaxing the mentioned assumptions. Accordingly, eight different models are proposed from eight combinations of holding or relaxing the assumptions from the simplest one that holds all the assumptions to the most general one that relaxes all of them. The models derived from the proposed framework allow me to investigate the biological plausibility of the three simplified assumptions on real data sets as well as finding the best model that is aligned with the underlying characteristics of the data sets. -- Avec l'avancement de séquençage à haut débit et l'augmentation dramatique des données géné¬tiques disponibles, la modélisation statistique est devenue un élément essentiel dans le domaine dé l'évolution moléculaire. Les résultats de la modélisation statistique dans de nombreuses découvertes intéressantes dans le domaine de la détection, de régions hautement conservées ou diverses dans un génome de l'inférence phylogénétique des espèces histoire évolutive. Parmi les différents types de séquences du génome, les régions codantes de protéines sont particulièrement intéressants en raison de leur impact sur les protéines. Les blocs de construction des protéines, à savoir les acides aminés, sont codés par des triplets de nucléotides, appelés codons. Par conséquent, l'étude de l'évolution des codons mène à la compréhension fondamentale de la façon dont les protéines fonctionnent et évoluent. Les modèles de codons actuels peuvent être classés en trois groupes principaux : les modèles de codons mécanistes, les modèles de codons empiriques et les hybrides. Les modèles mécanistes saisir une attention particulière en raison de la clarté de leurs hypothèses et les paramètres biologiques sous-jacents. Cependant, ils souffrent d'hypothèses simplificatrices qui permettent de surmonter le fardeau de la complexité des calculs. Les principales hypothèses retenues pour les modèles actuels de codons mécanistes sont : a) substitutions doubles et triples de nucleotides dans les codons sont négligeables, b) il n'y a pas de variation de la mutation chez les nucléotides d'un codon unique, et c) en supposant modèle nucléotidique HKY est suffisant pour capturer l'essence de taux de transition transversion au niveau nucléotidique. Dans cette thèse, je poursuis deux objectifs principaux. Le premier objectif est de développer un cadre de modèles de codons mécanistes, nommé cadre KCM-based model family, sur la base de la détention ou de l'assouplissement des hypothèses mentionnées. En conséquence, huit modèles différents sont proposés à partir de huit combinaisons de la détention ou l'assouplissement des hypothèses de la plus simple qui détient toutes les hypothèses à la plus générale qui détend tous. Les modèles dérivés du cadre proposé nous permettent d'enquêter sur la plausibilité biologique des trois hypothèses simplificatrices sur des données réelles ainsi que de trouver le meilleur modèle qui est aligné avec les caractéristiques sous-jacentes des jeux de données. Nos expériences montrent que, dans aucun des jeux de données réelles, tenant les trois hypothèses mentionnées est réaliste. Cela signifie en utilisant des modèles simples qui détiennent ces hypothèses peuvent être trompeuses et les résultats de l'estimation inexacte des paramètres. Le deuxième objectif est de développer un modèle mécaniste de codon généralisée qui détend les trois hypothèses simplificatrices, tandis que d'informatique efficace, en utilisant une opération de matrice appelée produit de Kronecker. Nos expériences montrent que sur un jeux de données choisis au hasard, le modèle proposé de codon mécaniste généralisée surpasse autre modèle de codon par rapport à AICc métrique dans environ la moitié des ensembles de données. En outre, je montre à travers plusieurs expériences que le modèle général proposé est biologiquement plausible.
Resumo:
Rapport de synthèse : l .Objectif Evaluer l'effet qu'ont les consignes d'utilisation régulière d'un spray nasal à la nicotine sur leur véritable utilisation durant les 3 premières semaines d'un sevrage tabagique. Un objectif secondaire est d'évaluer l'effet des consignes d'utilisation régulière du spray durant les premières semaines de sevrage tabagique sur le taux de succès à 6 mois par rapport à un groupe pouvant utiliser le spray « ad libitum ». 2. Méthode II s'agit d'une étude ouverte, randomisée contrôlée, incluant 50 patients présentant une dépendance nicotinique forte, se trouvant en phase de préparation selon le modèle transthéorique du changement de Prochaska et Di Clemente, recrutés au sein de la consultation «stop tabac » de la Policlinique Médicale Universitaire de Lausanne. Dans le groupe «contrôle », les patients ont été instruits à utiliser le spray « ad libitum », soit dès qu'apparaissaient des envies irrésistibles de fumer, tandis que le groupe «intervention » a reçu pour consigne d'utiliser le spray au moins 1 fois par heure dès le lever, voire plus en cas d'envie de fumer. L'utilisation du spray nasal a été enregistrée par un dispositif électronique fixé sur le spray (MDILogTM) durant les 3 premières semaines d'utilisation. Durant le suivi, l'abstinence tabagique a été vérifiée par une mesure du taux de CO expiré par un appareil spécifique (Bedfont Smokerlyzer). L'abstinence tabagique a été considérée comme un succès si le taux de CO était s 10 ppm (particules par million). 3. Résultats Un patient a été perdu durant le suivi. Au moment de la randomisation, le groupe «intervention » comprenait plus de femmes, des patients ayant un nombre plus grand de précédentes tentatives d'arrêt du tabagisme, plus de co-morbidités psychiatriques, mais moins de co-morbidités somatiques que le groupe «contrôle ». Dans les 2 groupes, les participants ont utilisé le spray nasal plus de 8 fois par jour (minimum demandé dans le groupe intervention). L'utilisation moyenne du spray était de 13,6 doses/jour pour le groupe «intervention » et de 1 l,l doses/jour pour le groupe contrôle. Ajusté aux différences entre les 2 groupes, la différence entre les doses plus importantes utilisées dans le groupe «intervention »par rapport à celles du groupe « ad libitum »reste non significative durant la première (0.8 ; CI 95% -5.1 ; 6,7), la deuxième (4.0 ; CI 95% -1.9 ; 9.9) et la troisième semaine (3.0 ; CI 95% -2.5 ; 8.5). De même, le fait d'instruire le patient à utiliser chaque heure le spray nasal durant les premières semaines n'a pas eu d'impact sur le taux de succès à 6 mois (RR = 0.69 ; CI 95% 0.34 ; 1.39). 4. Conclusions Cette étude négative montre que les différences d'utilisation du spray nasal nicotinique sont plus dépendantes des caractéristiques individuelles du patient que des recommandations d'utilisation du thérapeute. Les patients présentant un syndrome de dépendance à la nicotine forte utilisent spontanément de manière importante le spray nasal nicotinique, indépendamment des recommandations données. Pour les patients présentant un syndrome de dépendance à la nicotine forte, les recommandations par le thérapeute d'utiliser le spray nasal dès l'apparition d'envies de fumer semblent être la manière de faire la plus adéquate.
Resumo:
Ancien possesseur : Labrouste, Henri (1801-1875)
Resumo:
Ancien possesseur : Labrouste, Henri (1801-1875)
Resumo:
Ces dernières années, de nombreuses recherches ont mis en évidence les effets toxiques des micropolluants organiques pour les espèces de nos lacs et rivières. Cependant, la plupart de ces études se sont focalisées sur la toxicité des substances individuelles, alors que les organismes sont exposés tous les jours à des milliers de substances en mélange. Or les effets de ces cocktails ne sont pas négligeables. Cette thèse de doctorat s'est ainsi intéressée aux modèles permettant de prédire le risque environnemental de ces cocktails pour le milieu aquatique. Le principal objectif a été d'évaluer le risque écologique des mélanges de substances chimiques mesurées dans le Léman, mais aussi d'apporter un regard critique sur les méthodologies utilisées afin de proposer certaines adaptations pour une meilleure estimation du risque. Dans la première partie de ce travail, le risque des mélanges de pesticides et médicaments pour le Rhône et pour le Léman a été établi en utilisant des approches envisagées notamment dans la législation européenne. Il s'agit d'approches de « screening », c'est-à-dire permettant une évaluation générale du risque des mélanges. Une telle approche permet de mettre en évidence les substances les plus problématiques, c'est-à-dire contribuant le plus à la toxicité du mélange. Dans notre cas, il s'agit essentiellement de 4 pesticides. L'étude met également en évidence que toutes les substances, même en trace infime, contribuent à l'effet du mélange. Cette constatation a des implications en terme de gestion de l'environnement. En effet, ceci implique qu'il faut réduire toutes les sources de polluants, et pas seulement les plus problématiques. Mais l'approche proposée présente également un biais important au niveau conceptuel, ce qui rend son utilisation discutable, en dehors d'un screening, et nécessiterait une adaptation au niveau des facteurs de sécurité employés. Dans une deuxième partie, l'étude s'est portée sur l'utilisation des modèles de mélanges dans le calcul de risque environnemental. En effet, les modèles de mélanges ont été développés et validés espèce par espèce, et non pour une évaluation sur l'écosystème en entier. Leur utilisation devrait donc passer par un calcul par espèce, ce qui est rarement fait dû au manque de données écotoxicologiques à disposition. Le but a été donc de comparer, avec des valeurs générées aléatoirement, le calcul de risque effectué selon une méthode rigoureuse, espèce par espèce, avec celui effectué classiquement où les modèles sont appliqués sur l'ensemble de la communauté sans tenir compte des variations inter-espèces. Les résultats sont dans la majorité des cas similaires, ce qui valide l'approche utilisée traditionnellement. En revanche, ce travail a permis de déterminer certains cas où l'application classique peut conduire à une sous- ou sur-estimation du risque. Enfin, une dernière partie de cette thèse s'est intéressée à l'influence que les cocktails de micropolluants ont pu avoir sur les communautés in situ. Pour ce faire, une approche en deux temps a été adoptée. Tout d'abord la toxicité de quatorze herbicides détectés dans le Léman a été déterminée. Sur la période étudiée, de 2004 à 2009, cette toxicité due aux herbicides a diminué, passant de 4% d'espèces affectées à moins de 1%. Ensuite, la question était de savoir si cette diminution de toxicité avait un impact sur le développement de certaines espèces au sein de la communauté des algues. Pour ce faire, l'utilisation statistique a permis d'isoler d'autres facteurs pouvant avoir une influence sur la flore, comme la température de l'eau ou la présence de phosphates, et ainsi de constater quelles espèces se sont révélées avoir été influencées, positivement ou négativement, par la diminution de la toxicité dans le lac au fil du temps. Fait intéressant, une partie d'entre-elles avait déjà montré des comportements similaires dans des études en mésocosmes. En conclusion, ce travail montre qu'il existe des modèles robustes pour prédire le risque des mélanges de micropolluants sur les espèces aquatiques, et qu'ils peuvent être utilisés pour expliquer le rôle des substances dans le fonctionnement des écosystèmes. Toutefois, ces modèles ont bien sûr des limites et des hypothèses sous-jacentes qu'il est important de considérer lors de leur application. - Depuis plusieurs années, les risques que posent les micropolluants organiques pour le milieu aquatique préoccupent grandement les scientifiques ainsi que notre société. En effet, de nombreuses recherches ont mis en évidence les effets toxiques que peuvent avoir ces substances chimiques sur les espèces de nos lacs et rivières, quand elles se retrouvent exposées à des concentrations aiguës ou chroniques. Cependant, la plupart de ces études se sont focalisées sur la toxicité des substances individuelles, c'est à dire considérées séparément. Actuellement, il en est de même dans les procédures de régulation européennes, concernant la partie évaluation du risque pour l'environnement d'une substance. Or, les organismes sont exposés tous les jours à des milliers de substances en mélange, et les effets de ces "cocktails" ne sont pas négligeables. L'évaluation du risque écologique que pose ces mélanges de substances doit donc être abordé par de la manière la plus appropriée et la plus fiable possible. Dans la première partie de cette thèse, nous nous sommes intéressés aux méthodes actuellement envisagées à être intégrées dans les législations européennes pour l'évaluation du risque des mélanges pour le milieu aquatique. Ces méthodes sont basées sur le modèle d'addition des concentrations, avec l'utilisation des valeurs de concentrations des substances estimées sans effet dans le milieu (PNEC), ou à partir des valeurs des concentrations d'effet (CE50) sur certaines espèces d'un niveau trophique avec la prise en compte de facteurs de sécurité. Nous avons appliqué ces méthodes à deux cas spécifiques, le lac Léman et le Rhône situés en Suisse, et discuté les résultats de ces applications. Ces premières étapes d'évaluation ont montré que le risque des mélanges pour ces cas d'étude atteint rapidement une valeur au dessus d'un seuil critique. Cette valeur atteinte est généralement due à deux ou trois substances principales. Les procédures proposées permettent donc d'identifier les substances les plus problématiques pour lesquelles des mesures de gestion, telles que la réduction de leur entrée dans le milieu aquatique, devraient être envisagées. Cependant, nous avons également constaté que le niveau de risque associé à ces mélanges de substances n'est pas négligeable, même sans tenir compte de ces substances principales. En effet, l'accumulation des substances, même en traces infimes, atteint un seuil critique, ce qui devient plus difficile en terme de gestion du risque. En outre, nous avons souligné un manque de fiabilité dans ces procédures, qui peuvent conduire à des résultats contradictoires en terme de risque. Ceci est lié à l'incompatibilité des facteurs de sécurité utilisés dans les différentes méthodes. Dans la deuxième partie de la thèse, nous avons étudié la fiabilité de méthodes plus avancées dans la prédiction de l'effet des mélanges pour les communautés évoluant dans le système aquatique. Ces méthodes reposent sur le modèle d'addition des concentrations (CA) ou d'addition des réponses (RA) appliqués sur les courbes de distribution de la sensibilité des espèces (SSD) aux substances. En effet, les modèles de mélanges ont été développés et validés pour être appliqués espèce par espèce, et non pas sur plusieurs espèces agrégées simultanément dans les courbes SSD. Nous avons ainsi proposé une procédure plus rigoureuse, pour l'évaluation du risque d'un mélange, qui serait d'appliquer d'abord les modèles CA ou RA à chaque espèce séparément, et, dans une deuxième étape, combiner les résultats afin d'établir une courbe SSD du mélange. Malheureusement, cette méthode n'est pas applicable dans la plupart des cas, car elle nécessite trop de données généralement indisponibles. Par conséquent, nous avons comparé, avec des valeurs générées aléatoirement, le calcul de risque effectué selon cette méthode plus rigoureuse, avec celle effectuée traditionnellement, afin de caractériser la robustesse de cette approche qui consiste à appliquer les modèles de mélange sur les courbes SSD. Nos résultats ont montré que l'utilisation de CA directement sur les SSDs peut conduire à une sous-estimation de la concentration du mélange affectant 5 % ou 50% des espèces, en particulier lorsque les substances présentent un grand écart- type dans leur distribution de la sensibilité des espèces. L'application du modèle RA peut quant à lui conduire à une sur- ou sous-estimations, principalement en fonction de la pente des courbes dose- réponse de chaque espèce composant les SSDs. La sous-estimation avec RA devient potentiellement importante lorsque le rapport entre la EC50 et la EC10 de la courbe dose-réponse des espèces est plus petit que 100. Toutefois, la plupart des substances, selon des cas réels, présentent des données d' écotoxicité qui font que le risque du mélange calculé par la méthode des modèles appliqués directement sur les SSDs reste cohérent et surestimerait plutôt légèrement le risque. Ces résultats valident ainsi l'approche utilisée traditionnellement. Néanmoins, il faut garder à l'esprit cette source d'erreur lorsqu'on procède à une évaluation du risque d'un mélange avec cette méthode traditionnelle, en particulier quand les SSD présentent une distribution des données en dehors des limites déterminées dans cette étude. Enfin, dans la dernière partie de cette thèse, nous avons confronté des prédictions de l'effet de mélange avec des changements biologiques observés dans l'environnement. Dans cette étude, nous avons utilisé des données venant d'un suivi à long terme d'un grand lac européen, le lac Léman, ce qui offrait la possibilité d'évaluer dans quelle mesure la prédiction de la toxicité des mélanges d'herbicide expliquait les changements dans la composition de la communauté phytoplanctonique. Ceci à côté d'autres paramètres classiques de limnologie tels que les nutriments. Pour atteindre cet objectif, nous avons déterminé la toxicité des mélanges sur plusieurs années de 14 herbicides régulièrement détectés dans le lac, en utilisant les modèles CA et RA avec les courbes de distribution de la sensibilité des espèces. Un gradient temporel de toxicité décroissant a pu être constaté de 2004 à 2009. Une analyse de redondance et de redondance partielle, a montré que ce gradient explique une partie significative de la variation de la composition de la communauté phytoplanctonique, même après avoir enlevé l'effet de toutes les autres co-variables. De plus, certaines espèces révélées pour avoir été influencées, positivement ou négativement, par la diminution de la toxicité dans le lac au fil du temps, ont montré des comportements similaires dans des études en mésocosmes. On peut en conclure que la toxicité du mélange herbicide est l'un des paramètres clés pour expliquer les changements de phytoplancton dans le lac Léman. En conclusion, il existe diverses méthodes pour prédire le risque des mélanges de micropolluants sur les espèces aquatiques et celui-ci peut jouer un rôle dans le fonctionnement des écosystèmes. Toutefois, ces modèles ont bien sûr des limites et des hypothèses sous-jacentes qu'il est important de considérer lors de leur application, avant d'utiliser leurs résultats pour la gestion des risques environnementaux. - For several years now, the scientists as well as the society is concerned by the aquatic risk organic micropollutants may pose. Indeed, several researches have shown the toxic effects these substances may induce on organisms living in our lakes or rivers, especially when they are exposed to acute or chronic concentrations. However, most of the studies focused on the toxicity of single compounds, i.e. considered individually. The same also goes in the current European regulations concerning the risk assessment procedures for the environment of these substances. But aquatic organisms are typically exposed every day simultaneously to thousands of organic compounds. The toxic effects resulting of these "cocktails" cannot be neglected. The ecological risk assessment of mixtures of such compounds has therefore to be addressed by scientists in the most reliable and appropriate way. In the first part of this thesis, the procedures currently envisioned for the aquatic mixture risk assessment in European legislations are described. These methodologies are based on the mixture model of concentration addition and the use of the predicted no effect concentrations (PNEC) or effect concentrations (EC50) with assessment factors. These principal approaches were applied to two specific case studies, Lake Geneva and the River Rhône in Switzerland, including a discussion of the outcomes of such applications. These first level assessments showed that the mixture risks for these studied cases exceeded rapidly the critical value. This exceeding is generally due to two or three main substances. The proposed procedures allow therefore the identification of the most problematic substances for which management measures, such as a reduction of the entrance to the aquatic environment, should be envisioned. However, it was also showed that the risk levels associated with mixtures of compounds are not negligible, even without considering these main substances. Indeed, it is the sum of the substances that is problematic, which is more challenging in term of risk management. Moreover, a lack of reliability in the procedures was highlighted, which can lead to contradictory results in terms of risk. This result is linked to the inconsistency in the assessment factors applied in the different methods. In the second part of the thesis, the reliability of the more advanced procedures to predict the mixture effect to communities in the aquatic system were investigated. These established methodologies combine the model of concentration addition (CA) or response addition (RA) with species sensitivity distribution curves (SSD). Indeed, the mixture effect predictions were shown to be consistent only when the mixture models are applied on a single species, and not on several species simultaneously aggregated to SSDs. Hence, A more stringent procedure for mixture risk assessment is proposed, that would be to apply first the CA or RA models to each species separately and, in a second step, to combine the results to build an SSD for a mixture. Unfortunately, this methodology is not applicable in most cases, because it requires large data sets usually not available. Therefore, the differences between the two methodologies were studied with datasets created artificially to characterize the robustness of the traditional approach applying models on species sensitivity distribution. The results showed that the use of CA on SSD directly might lead to underestimations of the mixture concentration affecting 5% or 50% of species, especially when substances present a large standard deviation of the distribution from the sensitivity of the species. The application of RA can lead to over- or underestimates, depending mainly on the slope of the dose-response curves of the individual species. The potential underestimation with RA becomes important when the ratio between the EC50 and the EC10 for the dose-response curve of the species composing the SSD are smaller than 100. However, considering common real cases of ecotoxicity data for substances, the mixture risk calculated by the methodology applying mixture models directly on SSDs remains consistent and would rather slightly overestimate the risk. These results can be used as a theoretical validation of the currently applied methodology. Nevertheless, when assessing the risk of mixtures, one has to keep in mind this source of error with this classical methodology, especially when SSDs present a distribution of the data outside the range determined in this study Finally, in the last part of this thesis, we confronted the mixture effect predictions with biological changes observed in the environment. In this study, long-term monitoring of a European great lake, Lake Geneva, provides the opportunity to assess to what extent the predicted toxicity of herbicide mixtures explains the changes in the composition of the phytoplankton community next to other classical limnology parameters such as nutrients. To reach this goal, the gradient of the mixture toxicity of 14 herbicides regularly detected in the lake was calculated, using concentration addition and response addition models. A decreasing temporal gradient of toxicity was observed from 2004 to 2009. Redundancy analysis and partial redundancy analysis showed that this gradient explains a significant portion of the variation in phytoplankton community composition, even when having removed the effect of all other co-variables. Moreover, some species that were revealed to be influenced positively or negatively, by the decrease of toxicity in the lake over time, showed similar behaviors in mesocosms studies. It could be concluded that the herbicide mixture toxicity is one of the key parameters to explain phytoplankton changes in Lake Geneva. To conclude, different methods exist to predict the risk of mixture in the ecosystems. But their reliability varies depending on the underlying hypotheses. One should therefore carefully consider these hypotheses, as well as the limits of the approaches, before using the results for environmental risk management
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.