926 resultados para Mixed binary nonlinear programming
Resumo:
Esta tese investiga a caracterização (e modelação) de dispositivos que realizam o interface entre os domínios digital e analógico, tal como os buffers de saída dos circuitos integrados (CI). Os terminais sem fios da atualidade estão a ser desenvolvidos tendo em vista o conceito de rádio-definido-por-software introduzido por Mitola. Idealmente esta arquitetura tira partido de poderosos processadores e estende a operação dos blocos digitais o mais próximo possível da antena. Neste sentido, não é de estranhar que haja uma crescente preocupação, no seio da comunidade científica, relativamente à caracterização dos blocos que fazem o interface entre os domínios analógico e digital, sendo os conversores digital-analógico e analógico-digital dois bons exemplos destes circuitos. Dentro dos circuitos digitais de alta velocidade, tais como as memórias Flash, um papel semelhante é desempenhado pelos buffers de saída. Estes realizam o interface entre o domínio digital (núcleo lógico) e o domínio analógico (encapsulamento dos CI e parasitas associados às linhas de transmissão), determinando a integridade do sinal transmitido. Por forma a acelerar a análise de integridade do sinal, aquando do projeto de um CI, é fundamental ter modelos que são simultaneamente eficientes (em termos computacionais) e precisos. Tipicamente a extração/validação dos modelos para buffers de saída é feita usando dados obtidos da simulação de um modelo detalhado (ao nível do transístor) ou a partir de resultados experimentais. A última abordagem não envolve problemas de propriedade intelectual; contudo é raramente mencionada na literatura referente à caracterização de buffers de saída. Neste sentido, esta tese de Doutoramento foca-se no desenvolvimento de uma nova configuração de medição para a caracterização e modelação de buffers de saída de alta velocidade, com a natural extensão aos dispositivos amplificadores comutados RF-CMOS. Tendo por base um procedimento experimental bem definido, um modelo estado-da-arte é extraído e validado. A configuração de medição desenvolvida aborda não apenas a integridade dos sinais de saída mas também do barramento de alimentação. Por forma a determinar a sensibilidade das quantias estimadas (tensão e corrente) aos erros presentes nas diversas variáveis associadas ao procedimento experimental, uma análise de incerteza é também apresentada.
Resumo:
“Branch-and-cut” algorithm is one of the most efficient exact approaches to solve mixed integer programs. This algorithm combines the advantages of a pure branch-and-bound approach and cutting planes scheme. Branch-and-cut algorithm computes the linear programming relaxation of the problem at each node of the search tree which is improved by the use of cuts, i.e. by the inclusion of valid inequalities. It should be taken into account that selection of strongest cuts is crucial for their effective use in branch-and-cut algorithm. In this thesis, we focus on the derivation and use of cutting planes to solve general mixed integer problems, and in particular inventory problems combined with other problems such as distribution, supplier selection, vehicle routing, etc. In order to achieve this goal, we first consider substructures (relaxations) of such problems which are obtained by the coherent loss of information. The polyhedral structure of those simpler mixed integer sets is studied to derive strong valid inequalities. Finally those strong inequalities are included in the cutting plane algorithms to solve the general mixed integer problems. We study three mixed integer sets in this dissertation. The first two mixed integer sets arise as a subproblem of the lot-sizing with supplier selection, the network design and the vendor-managed inventory routing problems. These sets are variants of the well-known single node fixed-charge network set where a binary or integer variable is associated with the node. The third set occurs as a subproblem of mixed integer sets where incompatibility between binary variables is considered. We generate families of valid inequalities for those sets, identify classes of facet-defining inequalities, and discuss the separation problems associated with the inequalities. Then cutting plane frameworks are implemented to solve some mixed integer programs. Preliminary computational experiments are presented in this direction.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.
Resumo:
Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.
Resumo:
This paper presents a new method for the inclusion of nonlinear demand and supply relationships within a linear programming model. An existing method for this purpose is described first and its shortcomings are pointed out before showing how the new approach overcomes those difficulties and how it provides a more accurate and 'smooth' (rather than a kinked) approximation of the nonlinear functions as well as dealing with equilibrium under perfect competition instead of handling just the monopolistic situation. The workings of the proposed method are illustrated by extending a previously available sectoral model for the UK agriculture.
Resumo:
This paper provides general matrix formulas for computing the score function, the (expected and observed) Fisher information and the A matrices (required for the assessment of local influence) for a quite general model which includes the one proposed by Russo et al. (2009). Additionally, we also present an expression for the generalized leverage on fixed and random effects. The matrix formulation has notational advantages, since despite the complexity of the postulated model, all general formulas are compact, clear and have nice forms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the use of probit and logit link functions for the genetic evaluation of early pregnancy using simulated data. The following simulation/analysis structures were constructed: logit/logit, logit/probit, probit/logit, and probit/probit. The percentages of precocious females were 5, 10, 15, 20, 25 and 30% and were adjusted based on a change in the mean of the latent variable. The parametric heritability (h²) was 0.40. Simulation and genetic evaluation were implemented in the R software. Heritability estimates (ĥ²) were compared with h² using the mean squared error. Pearson correlations between predicted and true breeding values and the percentage of coincidence between true and predicted ranking, considering the 10% of bulls with the highest breeding values (TOP10) were calculated. The mean ĥ² values were under- and overestimated for all percentages of precocious females when logit/probit and probit/logit models used. In addition, the mean squared errors of these models were high when compared with those obtained with the probit/probit and logit/logit models. Considering ĥ², probit/probit and logit/logit were also superior to logit/probit and probit/logit, providing values close to the parametric heritability. Logit/probit and probit/logit presented low Pearson correlations, whereas the correlations obtained with probit/probit and logit/logit ranged from moderate to high. With respect to the TOP10 bulls, logit/probit and probit/logit presented much lower percentages than probit/probit and logit/logit. The genetic parameter estimates and predictions of breeding values of the animals obtained with the logit/logit and probit/probit models were similar. In contrast, the results obtained with probit/logit and logit/probit were not satisfactory. There is need to compare the estimation and prediction ability of logit and probit link functions.
Resumo:
A combined methodology consisting of successive linear programming (SLP) and a simple genetic algorithm (SGA) solves the reactive planning problem. The problem is divided into operating and planning subproblems; the operating subproblem, which is a nonlinear, ill-conditioned and nonconvex problem, consists of determining the voltage control and the adjustment of reactive sources. The planning subproblem consists of obtaining the optimal reactive source expansion considering operational, economical and physical characteristics of the system. SLP solves the optimal reactive dispatch problem related to real variables, while SGA is used to determine the necessary adjustments of both the binary and discrete variables existing in the modelling problem. Once the set of candidate busbars has been defined, the program implemented gives the location and size of the reactive sources needed, if any, to maintain the operating and security constraints.
Resumo:
This paper presents a mixed-integer quadratically-constrained programming (MIQCP) model to solve the distribution system expansion planning (DSEP) problem. The DSEP model considers the construction/reinforcement of substations, the construction/reconductoring of circuits, the allocation of fixed capacitors banks and the radial topology modification. As the DSEP problem is a very complex mixed-integer non-linear programming problem, it is convenient to reformulate it like a MIQCP problem; it is demonstrated that the proposed formulation represents the steady-state operation of a radial distribution system. The proposed MIQCP model is a convex formulation, which allows to find the optimal solution using optimization solvers. Test systems of 23 and 54 nodes and one real distribution system of 136 nodes were used to show the efficiency of the proposed model in comparison with other DSEP models available in the specialized literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The issue of assessing variance components is essential in deciding on the inclusion of random effects in the context of mixed models. In this work we discuss this problem by supposing nonlinear elliptical models for correlated data by using the score-type test proposed in Silvapulle and Silvapulle (1995). Being asymptotically equivalent to the likelihood ratio test and only requiring the estimation under the null hypothesis, this test provides a fairly easy computable alternative for assessing one-sided hypotheses in the context of the marginal model. Taking into account the possible non-normal distribution, we assume that the joint distribution of the response variable and the random effects lies in the elliptical class, which includes light-tailed and heavy-tailed distributions such as Student-t, power exponential, logistic, generalized Student-t, generalized logistic, contaminated normal, and the normal itself, among others. We compare the sensitivity of the score-type test under normal, Student-t and power exponential models for the kinetics data set discussed in Vonesh and Carter (1992) and fitted using the model presented in Russo et al. (2009). Also, a simulation study is performed to analyze the consequences of the kurtosis misspecification.
Resumo:
In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.