951 resultados para Microwave hydrothermal synthesis
Resumo:
A simple hydrothermal method has been developed to synthesize monodisperse beta-NaLuF4 microplates in a large scale. The microcrystals have a perfect hexagonal shape with a diameter of about 5.2 mu m and a thickness of 300 nm. Trisodium citrate (Cit(3-)), which is introduced into the reaction mixture and acts as the chelating agent and shape modifier, plays a key role in fine-tuning the microstructures. The dominant adsorption of Cit(3-) onto the {0001} facets lowers the surface energy of these facets.
Resumo:
In this work, a one-dimensional microrod-based three-dimensional flowerlike indium hydroxide (In(OH)(3)) structure was fabricated, without any templates or surfactants, using a well-known hydrothermal approach at a non-high temperature. In2O3 with similar morphology was formed by annealing In(OH)3 precursors and was characterized by Raman spectrum and photoluminescence (PL) spectrum in detail.
Resumo:
Using sodium dodecyl sulfate (SDS), a 3D microflowery indium hydroxide [In(OH)(3)] structure assembled from 2D nanoflakes was fabricated in a large quantity via a hydrothermal approach at relative low temperature. The obtained In(OH)(3) flowers exhibited a narrow size range between 4 and 6 mu m. The properties of these composites were characterized by XRD, EDX, FE-SEM, TEM, SAED, and TGA. In this work, both the use of urea and SDS and the amounts of these components played important roles in the formation of In(OH)3 with different nanostructures.
Resumo:
A porous material with cobalt-oxygen cluster framework has been synthesized hydrothermally, which possesses large and rigid channels and manifests strong antiferromagnetic interactions, and the pyridinedicarboxylate ligand exhibits two types of rare coordination modes.
Resumo:
Layer-controlled hierarchical flowerlike AgIn(MoO4)(2) microstructures with "clean" surfaces using submicroplates as building blocks without introducing any template have been fabricated through a low-cost hydrothermal method. The near-infrared luminescence of lanthanide ion (Nd, Er, and Yb) doped AgIn(MoO4)(2) microstructures, in the 1300-1600 nm region, was discussed and is of particular interest for telecommunication applications. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction, and photoluminescence spectra were used to characterize these materials.
Resumo:
Three new metal-organic coordination polymers, [Cu(2,3-pydc)(bpp)]center dot 2.5H(2)O (1), [Zn(2,3-pydc)(bpp)]center dot 2.5H(2)O (2) and [Cd(2,3-pydc)(bpp)(H2O)]center dot 3H(2)O (3) (2,3-pydcH(2) = pyridine-2,3-dicarboxylic acid, bpp 1,3-bis(4-pyridyl)propane), have been synthesized at room temvperature. All complexes have metal ions serving as 4-connected nodes but represent two quite different structural motifs. Complexes 1 and 2 are isomorphous, both of which feature 2D -> 3D parallel interpenetration. Each two-dimensional (2D) layer with (4, 4) topology is interlocked by two nearest neighbours, one above and one below, thus leading to an unusual 3D motif. Complex 3 has a non-interpenetrating 3D CdSO4 framework with cavities occupied by uncoordinated water molecules.
Resumo:
beta-NaYF4 hexagonal microprisms and microrods with different aspect ratios have been prepared via a simple hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The influences of reaction temperature and the molar ratio of NaF to y(3+) on the crystal phases and shapes of final products have been studied in detail. The aspect ratios of products increase gradually with the increase of reaction temperature and NaF/Y3+ molar ratio. The growth mechanisms of crystals prepared under the different conditions are presented systematically. More importantly, the systematical investigation on the luminescence properties of beta-NaYF4:xEu(3+) (x = 0.5, 1, 2, 3, 5, and 10 mol %) with hexagonally microprismatic morphology shows the characteristic emissions of Eu3+ (D-5(J)-F-7(J'), J, J' = 0, 1, 2, 3). Under the excitation of single wavelength light of 397 nm, the luminescence colors of the corresponding products can be tuned feasibly from bluish white to yellow to red by changing the doping concentration of Eu3+.
Preparation and luminescence properties of Mn2+-doped ZnGa2O4 nanofibers via electrospinning process
Resumo:
One-dimensional Mn2+-doped ZnGa2O4 nanofibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. SEM results indicated that the as-formed precursor fibers and those annealed at 700 degrees C are uniform with length of several tens to hundred micrometers, and the diameters of the fibers decrease greatly after being heated at 700 degrees C. Under ultraviolet excitation (246 nm) and low-voltage electron beams (1-3 kV) excitation, the ZnGa2O4:Mn2+ nanofibers presents the blue emission band of the ZnGa2O4 host lattice and the strong green emission with a peak at 505 nm corresponding to the T-4(1)-(6)A(1) transition of Mn2+ ion.
Resumo:
A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.
Resumo:
In this study, KMgF3:Eu2+ luminescent nanocrystals (NCs) were prepared in water/cetyltrimethylammonium bromide (CTAB)/2-octanol microemulsions. The KMgF3:Eu2+ NCs were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), fluorescence spectrum, infrared spectroscopy (IR) and elementary analysis. The results showed that the size of the KMgF3:Eu2+ NCs was hardly affected by water content and surfactant (CTAB) concentration. The emission spectrum showed that the position of the 362 nm peak is due to the K+ sites substituted Eu2+. Two emission peaks located at 589 and 612 nm can be attributed to Eu3+, which exist at two different types of Eu3+ centers: one is Eu3+ at a K+ site, the other is clustering of Eu3+ ions in the interstices of KMgF3 host lattice.
Resumo:
Superhigh aspect-ratio Cu-thiourea (Cu(tu)) nanowires have been synthesized in large quantity via a fast and facile method. Nanowires of Cu (tu)Cl center dot 0.5H(2)O and Cu(tu)Br center dot 0.5H(2)O were found to be 60-100 nm and 100-200 nm, in diameter, and could extend to several millimeters in length. It is found to be the most convenient and facile approach to the fabrication of one-dimensional superhigh aspect-ratio nanomaterials in large scale so far.
Resumo:
By introducing the flexible 1,1'-(1,4-butanediyl)bis(imidazole) (bbi) ligand into the polyoxovanadate system, five novel polyoxoanion-templated architectures based on [As8V14O42](4-) and [V16O38Cl](6-) building blocks were obtained: [M(bbi)(2)](2)[As8V14O42(H2O)] [M = Co (1), Ni (2), and Zn (3)], [Cu(bbi)](4)[As8V14O42(H2O)] (4), and [Cu(bbi)](6)[V16O38Cl] (5). Compounds 1-3 are isostructural, and they exhibit a binodal (4,6)-connected 2D structure with Schlafli symbol (3(4)center dot 4(2))(3(4)center dot 4(4)center dot 5(4)center dot 6(3))(2), in which the polyoxoanion induces a closed four-membered circuit of M-4(bbi)(4). Compound 4 exhibits an interesting 3D framework constructed from tetradentate [As8V14O42](4-) cluster anions and cationic ladderlike double chains. There exists a bigger M-8(bbi)(6)O-2 circuit in 4. The 3D extended structure of 5 is composed of heptadentate [V16O38Cl](6-) anions and flexural cationic chains; the latter consists of six Cu(bbi) segments arranged alternately. It presents the largest 24-membered circuit of M-24(bbi)(24) so far observed made of bbi molecules and transition-metal cations. Investigation of their structural relations shows the important template role of the polyoxoanions and the synergetic interactions among the polyoxoanions, transition-metal ions, and flexible ligand in the assembly process.
Resumo:
Reaction of 2,6-pyridinedicarboxylic with CoCl2 . 6H(2)O in aqueous solution give rise to a three-dimensional Complex CO2(2,6-DPC)(2)Co(H2O)(5).2H(2)O (DPC = 2,6-pyridinedicarboxylate) 1. It has been characterized by elemental analyses, infrared spectra (IR) spectrum, thermogravimetric (TG) analysis, EPR spectrum, and single crystal X-ray diffraction. The complex crystallizes in the P2(1)/c space group with a = 8.3906(3) Angstrom, b = 27.4005(8) Angstrom, c = 9.6192(4) A, alpha = 90.00degrees, beta = 98.327(2)degrees, gamma = 90.00degrees, V = 2188.20(14) Angstrom(3), Z = 4. There are two types of cobalt environments: Co(1) is coordinated by four oxygen atoms from four carboxyl groups and two nitrogen 2 atoms which are all from pdc(2). Co(2) is coordinated by six oxygen atoms, five from coordinated water molecules and one from a carboxyl of pdc(2) - of which the other oxygen atom is linked to the Co(1). The extensive intermolecular hydrogen bonds are formed in the crystal by means of the five coordinated water molecules.
Resumo:
The hydrothermal reactions of metavanadate and divalent iron salts in the presence of nitrogen-donor chelating ligands yield the complex [Fe(C10H8N2)(3)](2)[V4O12].10H(2)O, which consists of one centrosymmetric eight-membered ring [V4O12](4-) anion cluster, formed by four VO4 tetrahedra sharing vertices, two discrete octahedral [Fe(C10H8N2)(3)](2+) cations, formed by three 2,2'-bipyridyl ligands coordinated to Fe-II, and ten water molecules of solvation. The anion and coordination cations are isolated and form anion and cation layers, respectively. In the anion layers, these anions and water molecules of solvation are linked to each other, in a two-dimensional motif, through hydrogen-bonding interactions.
Resumo:
The reactions of freshly prepared Cu(OH)(2).xH(2)O and Cu(OH)(2-2y)(CO3)(y).zH(2)O precipitates with imidazole and adipic acid in CH3OH/H2O at pH = 5.4 yielded CU(C3N2H4)(2)(HL)(2) 1 and CU(C3N2H4)(2)L 2, respectively. Complex 1 consists of ribbon-like polymeric chains (1)(infinity)[CU(C3N2H4)(2)(HL)(4/2)], in which the octahedrally coordinated Cu atoms are doubly bridged by bis-monodentate hydrogen adipato ligands. The interchain N-H...O hydrogen bonding interactions are responsible for supramolecular assembly of the polymeric chains into open 3D frameworks and two-fold interpenetration of the resulting open frameworks completes the crystal structure of 1. Within complex 2, the Cu atoms are penta-coordinated to form CuN2O3 square pyramids and condensed into CU2N4O4 dimers, which are doubly bridged by twisted bis-monodentate adipato ligands into polymeric chains (1)(infinity)([CU(C3N2H4)(2)](2)L-4/2) with 4- and 18-membered rings progressing alternatively. The polymeric chains are assembled due to interchain N-H...O hydrogen bonding interactions. The thermal and magnetic behaviors of 1 and 2 is discussed.