983 resultados para Microonde Telerilevamento Satellite Meteorologia Nubi Precipitazioni Remote-sensing
Resumo:
Negli ultimi decenni sono stati studiati sul mar Mediterraneo dei fenomeni con caratteristiche comuni a quelle dei cicloni tropicali, chiamati medicane. L'obiettivo principale di questa tesi è quello di migliorare le attuali conoscenze sui medicane utilizzando un approccio di tipo satellitare per ottenere un algoritmo di detection. Per tale ragione sono stati integrati dati di diverse tipologie di sensori satellitari e del modello numerico WRF. Il sensore SEVIRI ha fornito misure di TB a 10.8μm e informazioni sulla distribuzione del vapor d’acqua atmosferico attraverso i due canali a 6.2 e 7.3 μm. I sensori AMSU–B/MHS hanno fornito informazioni sulle proprietà delle nubi e sulla distribuzione verticale del vapor d’acqua atmosferico attraverso le frequenze nelle microonde nell’intervallo 90-190 GHz. I canali a 183.31 GHz, sono stati utilizzati per alimentare gli algoritmi 183-WSL, per la stima delle precipitazioni, e MWCC, per la classificazione del tipo di nubi. Infine, le simulazioni tramite modello WRF hanno fornito i dati necessari per l’analisi dei campi di vento e di vorticità nella zona interessata dal ciclone. Lo schema computazione a soglie di sensibilità dell’algoritmo di detection è stato realizzato basandosi sui dati del medicane “Rolf” che, nel novembre 2011, ha interessato la zona del Mediterraneo occidentale. Sono stati, inoltre, utilizzati i dati di fulminazione della rete WWLLN, allo scopo di identificare meglio la fase di innesco del ciclone da quella matura. La validità dell’algoritmo è stata successivamente verificata su due casi studio: un medicane che nel settembre 2006 ha interessato la Puglia e un MCS sviluppatosi sulla Sicilia orientale nell'ottobre 2009. I risultati di questo lavoro di tesi da un lato hanno apportato un miglioramento delle conoscenze scientifiche sui cicloni mediterranei simil-tropicali, mentre dall’altro hanno prodotto una solida base fisica per il futuro sviluppo di un algoritmo automatico di riconoscimento per sistemi di tipo medicane.
Resumo:
In this report it was designed an innovative satellite-based monitoring approach applied on the Iraqi Marshlands to survey the extent and distribution of marshland re-flooding and assess the development of wetland vegetation cover. The study, conducted in collaboration with MEEO Srl , makes use of images collected from the sensor (A)ATSR onboard ESA ENVISAT Satellite to collect data at multi-temporal scales and an analysis was adopted to observe the evolution of marshland re-flooding. The methodology uses a multi-temporal pixel-based approach based on classification maps produced by the classification tool SOIL MAPPER ®. The catalogue of the classification maps is available as web service through the Service Support Environment Portal (SSE, supported by ESA). The inundation of the Iraqi marshlands, which has been continuous since April 2003, is characterized by a high degree of variability, ad-hoc interventions and uncertainty. Given the security constraints and vastness of the Iraqi marshlands, as well as cost-effectiveness considerations, satellite remote sensing was the only viable tool to observe the changes taking place on a continuous basis. The proposed system (ALCS – AATSR LAND CLASSIFICATION SYSTEM) avoids the direct use of the (A)ATSR images and foresees the application of LULCC evolution models directly to „stock‟ of classified maps. This approach is made possible by the availability of a 13 year classified image database, conceived and implemented in the CARD project (http://earth.esa.int/rtd/Projects/#CARD).The approach here presented evolves toward an innovative, efficient and fast method to exploit the potentiality of multi-temporal LULCC analysis of (A)ATSR images. The two main objectives of this work are both linked to a sort of assessment: the first is to assessing the ability of modeling with the web-application ALCS using image-based AATSR classified with SOIL MAPPER ® and the second is to evaluate the magnitude, the character and the extension of wetland rehabilitation.
Resumo:
Land related information about the Earth's surface is commonIJ found in two forms: (1) map infornlation and (2) satellite image da ta. Satellite imagery provides a good visual picture of what is on the ground but complex image processing is required to interpret features in an image scene. Increasingly, methods are being sought to integrate the knowledge embodied in mop information into the interpretation task, or, alternatively, to bypass interpretation and perform biophysical modeling directly on derived data sources. A cartographic modeling language, as a generic map analysis package, is suggested as a means to integrate geographical knowledge and imagery in a process-oriented view of the Earth. Specialized cartographic models may be developed by users, which incorporate mapping information in performing land classification. In addition, a cartographic modeling language may be enhanced with operators suited to processing remotely sensed imagery. We demonstrate the usefulness of a cartographic modeling language for pre-processing satellite imagery, and define two nerv cartographic operators that evaluate image neighborhoods as post-processing operations to interpret thematic map values. The language and operators are demonstrated with an example image classification task.
Resumo:
Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.
Resumo:
Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems
Resumo:
Trabalho de projecto apresentado como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Radiometric changes observed in multi-temporal optical satellite images have an important role in efforts to characterize selective-logging areas. The aim of this study was to analyze the multi-temporal behavior of spectral-mixture responses in satellite images in simulated selective-logging areas in the Amazon forest, considering red/near-infrared spectral relationships. Forest edges were used to infer the selective-logging infrastructure using differently oriented edges in the transition between forest and deforested areas in satellite images. TM/Landsat-5 images acquired at three dates with different solar-illumination geometries were used in this analysis. The method assumed that the radiometric responses between forest with selective-logging effects and forest edges in contact with recent clear-cuts are related. The spatial frequency attributes of red/near infrared bands for edge areas were analyzed. Analysis of dispersion diagrams showed two groups of pixels that represent selective-logging areas. The attributes for size and radiometric distance representing these two groups were related to solar-elevation angle. The results suggest that detection of timber exploitation areas is limited because of the complexity of the selective-logging radiometric response. Thus, the accuracy of detecting selective logging can be influenced by the solar-elevation angle at the time of image acquisition. We conclude that images with lower solar-elevation angles are less reliable for delineation of selecting logging.
Resumo:
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Resumo:
Compared to synthetic aperture radars (SARs), the angular resolution of microwave radiometers is quite poor. Traditionally, it has been limited by the physical size of the antenna. However, the angular resolution can be improved by means of aperture synthesis interferometric techniques. A narrow beam is synthesized during the image formation processing of the cross-correlations measured at zero-lag between pairs of signals collected by an array of antennas. The angular resolution is then determined by the maximum antenna spacing normalized to the wavelength (baseline). The next step in improving the angular resolution is the Doppler-Radiometer, somehow related to the super-synthesis radiometers and the Radiometer-SAR. This paper presents the concept of a three-antenna Doppler-Radiometer for 2D imaging. The performance of this instrument is evaluated in terms of angular/spatial resolution and radiometric sensitivity, and an L-band illustrative example is presented.
Resumo:
In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.
Resumo:
Medium-resolution satellite images have been widely used for the identification and quantification of irrigated areas by center pivot. These areas, which present predominantly circular forms, can be easily identified by visual analyses of these images. In addition to identifying and quantifying areas irrigated by center pivot, other information that is associated to these areas is fundamental for producing cadastral maps. The goal of this work was to generate cadastral mapping of areas irrigated by center pivots in the State of Minas Gerais, Brazil, with the purpose of supplying information on irrigated agriculture. Using the satellite CBERS2B/CCD, images were used to identify and quantify irrigated areas and then associate these areas with a database containing information about: irrigated area, perimeter, municipality, path row, basin in which the pivot is located, and the date of image acquisition.3,781 center pivots systems were identified. The smallest area irrigated was 4.6 hectares and the largest one was 192.6 hectares. The total estimated value of irrigated area was 254,875 hectares. The largest number of center pivots appeared in the municipalities of Unaí and Paracatu, with 495 and 459 systems, respectively. Cadastral mapping is a very useful tool to assist and enhance information on irrigated agriculture in the State of Minas Gerais.