960 resultados para Method engineering
Resumo:
Samples of Forsythia suspensa from raw (Laoqiao) and ripe (Qingqiao) fruit were analyzed with the use of HPLC-DAD and the EIS-MS techniques. Seventeen peaks were detected, and of these, twelve were identified. Most were related to the glucopyranoside molecular fragment. Samples collected from three geographical areas (Shanxi, Henan and Shandong Provinces), were discriminated with the use of hierarchical clustering analysis (HCA), discriminant analysis (DA), and principal component analysis (PCA) models, but only PCA was able to provide further information about the relationships between objects and loadings; eight peaks were related to the provinces of sample origin. The supervised classification models-K-nearest neighbor (KNN), least squares support vector machines (LS-SVM), and counter propagation artificial neural network (CP-ANN) methods, indicated successful classification but KNN produced 100% classification rate. Thus, the fruit were discriminated on the basis of their places of origin.
Resumo:
BACKGROUND Engineering is a problem-based practically oriented discipline, whose practitioners aim to find effective solutions to engineering challenges, technically and economically. Engineering educators operate within a mandate to ensure that graduate engineers understand the practicalities and realities of good engineering practice. While this is a vital goal for the discipline, emerging influences are challenging the focus on ‘hard practicalities’ and requiring recognition of the cultural and social aspects of engineering. Expecting graduate engineers to possess communication skills essential for negotiating satisfactory outcomes in contexts of complex social beliefs about the impact of their work can be an unsettling and challenging prospect for engineering educators. This project identifies and addresses Indigenous engineering practices and principles, and their relevance to future engineering practices. PURPOSE This Office of Learning and Teaching (OLT) project proposes that what is known/discoverable about indigenous engineering knowledge and practices must be integrated into engineering curricula. This is an important aspect of ensuring that engineering as a profession responds competently to increasing demands for socially and environmentally responsible activity across all aspects of engineering activity. DESIGN/METHOD The project addresses i) means for appropriate inclusion of Indigenous students into usual teaching activities ii) assuring engineering educators have access to knowledge of Indigenous practices and skills relevant to particular engineering courses and topics iii) means for preparing all students to negotiate their way through issues of indigenous relationships with the land where engineering projects are planned. The project is undertaking wide-ranging research to collate knowledge about indigenous engineering principles and practices and develop relevant resource materials. RESULTS It is common to hear that such social issues as ‘Indigenous concerns’ are only of concern to environmental engineers. We challenge that perspective, and make the case that Indigenous knowledge is an important issue for all engineering educators in relation to effective integration of indigenous students and preparation of all engineering graduates to engage with indigenous communities. At the time of first contact, a rich and varied, technically literate, Indigenous social framework possessed knowledge of the environment that is not yet fully acknowledged in Australian society. A core outcome of the work will be development of resources relating to Indigenous engineering practices for inclusion in engineering core curricula. CONCLUSIONS A large body of technical knowledge was needed to survive and sustain human society in the complex environment that was Australia before 1788. This project is developing resource materials, and supporting documentation, about that knowledge to enable engineering educators to more easily integrate it into current curricula. The project also aims to demonstrate the importance for graduating engineers to appreciate the existence of diverse perspectives on engineering tasks and learn how to value - and employ - multiple paths to possible solutions.
Resumo:
This invention concerns the control of rotating excavation machinery, for instance to avoid collisions with obstacles. In a first aspect the invention is a control system for autonomous path planning in excavation machinery, comprising: A map generation subsystem to receive data from an array of disparate and complementary sensors to generate a 3-Dimensional digital terrain and obstacle map referenced to a coordinate frame related to the machine's geometry, during normal operation of the machine. An obstacle detection subsystem to find and identify obstacles in the digital terrain and obstacle map, and then to refine the map by identifying exclusion zones that are within reach of the machine during operation. A collision detection subsystem that uses knowledge of the machine's position and movements, as well as the digital terrain and obstacle map, to identify and predict possible collisions with itself or other obstacles, and then uses a forward motion planner to predict collisions in a planned path. And, a path planning subsystem that uses information from the other subsystems to vary planned paths to avoid obstacles and collisions. In other aspects the invention is excavation machinery including the control system; a method for control of excavation machinery; and firmware and software versions of the control system.
Resumo:
Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.
Resumo:
Osteoarthritis is the most common cause of pain and disability in Australia. This project describes a method where hundreds of cartilage microtissues are generated as tiny building blocks for assembly into larger tissues suitable for cartilage defect repair. Tissue engineering applications has the potential to overcome natural barriers and effectively repair damaged cartilage tissue. However, engineering few-millimeter thick cartilage, similar to human cartilage in the knee, remains a challenge. Utilizing micropellets as building blocks has the potential to overcome some of the challenges in cartilage tissue engineering.
Resumo:
This paper relates to the importance of impact of the chosen bottle-point method when conducting ion exchange equilibria experiments. As an illustration, potassium ion exchange with strong acid cation resin was investigated due to its relevance to the treatment of various industrial effluents and groundwater. The “constant mass” bottle-point method was shown to be problematic in that depending upon the resin mass used the equilibrium isotherm profiles were different. Indeed, application of common equilibrium isotherm models revealed that the optimal fit could be with either the Freundlich or Temkin equations, depending upon the conditions employed. It could be inferred that the resin surface was heterogeneous in character, but precise conclusions regarding the variation in the heat of sorption were not possible. Estimation of the maximum potassium loading was also inconsistent when employing the “constant mass” method. The “constant concentration” bottle-point method illustrated that the Freundlich model was a good representation of the exchange process. The isotherms recorded were relatively consistent when compared to the “constant mass” approach. Unification of all the equilibrium isotherm data acquired was achieved by use of the Langmuir Vageler expression. The maximum loading of potassium ions was predicted to be at least 116.5 g/kg resin.
Resumo:
This paper presents a new metric, which we call the lighting variance ratio, for quantifying descriptors in terms of their variance to illumination changes. In many applications it is desirable to have descriptors that are robust to changes in illumination, especially in outdoor environments. The lighting variance ratio is useful for comparing descriptors and determining if a descriptor is lighting invariant enough for a given environment. The metric is analysed across a number of datasets, cameras and descriptors. The results show that the upright SIFT descriptor is typically the most lighting invariant descriptor.
Resumo:
This paper aims to develop a meshless approach based on the Point Interpolation Method (PIM) for numerical simulation of a space fractional diffusion equation. Two fully-discrete schemes for the one-dimensional space fractional diffusion equation are obtained by using the PIM and the strong-forms of the space diffusion equation. Numerical examples with different nodal distributions are studied to validate and investigate the accuracy and efficiency of the newly developed meshless approach.
Resumo:
A FitzHugh-Nagumo monodomain model has been used to describe the propagation of the electrical potential in heterogeneous cardiac tissue. In this paper, we consider a two-dimensional fractional FitzHugh-Nagumo monodomain model on an irregular domain. The model consists of a coupled Riesz space fractional nonlinear reaction-diffusion model and an ordinary differential equation, describing the ionic fluxes as a function of the membrane potential. Secondly, we use a decoupling technique and focus on solving the Riesz space fractional nonlinear reaction-diffusion model. A novel spatially second-order accurate semi-implicit alternating direction method (SIADM) for this model on an approximate irregular domain is proposed. Thirdly, stability and convergence of the SIADM are proved. Finally, some numerical examples are given to support our theoretical analysis and these numerical techniques are employed to simulate a two-dimensional fractional Fitzhugh-Nagumo model on both an approximate circular and an approximate irregular domain.
Resumo:
In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
Resumo:
In this paper, a new alternating direction implicit Galerkin--Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank--Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived method is stable and convergent of order $2$ in time. An optimal error estimate in space is also obtained by introducing a new orthogonal projector. The present method is extended to solve the fractional FitzHugh--Nagumo model. Numerical results are provided to verify the theoretical analysis.
Resumo:
The maximum principle for the space and time–space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time–space Riesz–Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor–corrector method combining the L1 and L2 discrete schemes, we present a numerical method for the specified equation. Two examples are given to illustrate the obtained results.