985 resultados para Mesozoic volcanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of their relative concentration towards the respective Atlantic margins, the silicic eruptives of the Parana (Brazil)-Etendeka large igneous province are disproportionately abundant in the Etendeka of Namibia. The NW Etendeka silicic units, dated at similar to132 Ma, occupy the upper stratigraphic levels of the volcanic sequences, restricted to the coastal zone, and comprise three latites and five quartz latites (QL). The large-volume Fria QL is the only low-Ti type. Its trace element and isotopic signatures indicate massive crustal input. The remaining NW Etendeka silicic units are enigmatic high-Ti types, geochemically different from low-Ti types. They exhibit chemical affinities with the temporally overlapping Khumib high-Ti basalt (see Ewart et al. Part 1) and high crystallization temperatures (greater than or equal to980 to 1120degreesC) inferred from augite and pigeonite phenocrysts, both consistent with their evolution from a mafic source. Geochemically, the high-Ti units define three groups, thought genetically related. We test whether these represent independent liquid lines of descent from a common high-Ti mafic parent. Although the recognition of latites reduces the apparent silica gap, difficulty is encountered in fractional crystallization models by the large volumes of two QL units. Numerical modelling does, however, support large-scale open-system fractional crystallization, assimilation of silicic to basaltic materials, and magma mixing, but cannot entirely exclude partial melting processes within the temporally active extensional environment. The fractional crystallization and mixing signatures add to the complexity of these enigmatic and controversial silicic magmas. The existence, however, of temporally and spatially overlapping high-Ti basalts is, in our view, not coincidental and the high-Ti character of the silicic magmas ultimately reflects a mantle signature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bimodal NW Etendeka province is located at the continental end of the Tristan plume trace in coastal Namibia. It comprises a high-Ti (Khumib type) and three low-Ti basalt (Tafelberg, Kuidas and Esmeralda types) suites, with, at stratigraphically higher level, interstratified high-Ti latites (three units) and quartz latites (five units), and one low-Ti quartz latite. Khumib basalts are enriched in high field strength elements and light rare earth elements relative to low-Ti types and exhibit trace element affinities with Tristan da Cunha lavas. The unradiogenic Pb-206/Pb-204 ratios of Khumib basalts are distinctive, most plotting to the left of the 132 Ma Geochron, together with elevated Pb-207/Pb-204 ratios, and Sr-Nd isotopic compositions plotting in the lower Nd-143/Nd-144 part of mantle array (EM1-like). The low-Ti basalts have less coherent trace element patterns and variable, radiogenic initial Sr (similar to0.707-0.717) and Pb isotope compositions, implying crustal contamination. Four samples, however, have less radiogenic Pb and Sr that we suggest approximate their uncontaminated source. All basalt types, but particularly the low-Ti types, contain samples with trace element characteristics (e.g. Nb/Nb-*) suggesting metasediment input, considered source-related. Radiogenic isotope compositions of these samples require long-term isolation of the source in the mantle and depletions (relative to unmodified sediment) in certain elements (e.g. Cs, Pb, U), which are possibly subduction-related. A geodynamic model is proposed in which the emerging Tristan plume entrained subducted material in the Transition Zone region, and further entrained asthenosphere during plume head expansion. Mixing calculations suggest that the main features of the Etendeka basalt types can be explained without sub-continental lithospheric mantle input. Crustal contamination is evident in most low-Ti basalts, but is distinct from the incorporation of a metasedimentary source component at mantle depths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New K-Ar and Ar-40/Ar-39 data of tholeiitic and alkaline dike swarms from the onshore basement of the Santos Basin (SE Brazil) reveal Mesozoic and Tertiary magmatic pulses. The tholeiitic rocks (basalt, dolerite, and microgabbro) display high TiO2 contents (average 3.65 wt%) and comprise two magmatic groups. The NW-oriented samples of Group A have (La/Yb)N ratios between 15 and 32.3 and range in age from 192.9 +/- 2.2 to 160.9 +/- 1.9 Ma. The NNW-NNE Group B samples, with (La/Yb)(N) ratios between 7 and 16, range from 148.3 +/- 3 to 133.9 +/- 0.5 Ma. The alkaline rocks (syenite, trachyte, phonolite, alkaline basalts, and lamprophyre) display intermediate-K contents and comprise dikes, plugs, and stocks. Ages of approximately 82 Ma were obtained for the lamprophyre dikes, 70 Ma for the syenite plutons, and 64-59 Ma for felsic dikes. Because Jurassic-Early Cretaceous basic dikes have not been reported in SE Brazil, we might speculate that, during the emplacement of Group A dikes, extensional stresses were active in the region before the opening of the south Atlantic Ocean and coeval with the Karoo magmatism described in South Africa. Group B dikes yield ages compatible with those obtained for Serra Geral and Ponta Grossa magmatism in the Parana Basin and are directly related to the breakup of western Gondwana. Alkaline magmatism is associated with several tectonic episodes that postdate the opening of the Atlantic Ocean and related to the upwelling of the Trindade plume and the generation of Tertiary basins southeast of Brazil. In the studied region, alkaline magmatism can be subdivided in two episodes: the first one represented by lamprophyre dykes of approximately 82 Ma and the second comprised of felsic alkaline stocks of approximately 70 Ma and associated dikes ranging from 64 to 59 Ma. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Andean forearc of northern Chile comprises four morphotectonic units, which include from east to west: 1) The Cordillera de la Costa: composed of Jurassic granites and andesites, thought to represent a volcanic arc, the Mejillones terrane, an accreted allochthonous terrane, and the Lower Cretaceous Coloso basin, which formed through forearc extension along the suture between the Mejillones terrane and the Jurassic arc. Palaeomagnetic studies of the above units have identified approximately 29+/-11 degrees of clockwise rotation. Rotation is due to extension (caused by subduction roll back and slab pull), at an angle to the direction of absolute motion of the South American Plate. 2) The Central Depression: a large arid basin containing isolated fault-bounded blocks of pre-Mesozoic metamorphosed igneous rocks, Triassic sediments and volcanics, and Jurassic carbonates, deposited in a. back-arc basin setting. The isolated blocks formed through extension along previous thrust faults, these originated through compression of the back-arc basin due to accretion of the Jurassic volcanic arc. 3) The Precordillera.: composed of Permian-Triassic rift-related sediments and volcanics, Jurassic continental sediments synchronous with back-arc basin sedimentation, and Cretaceous and Oligo-Miocene continental sediments deposited in foreland basins. Palaeomagnetism has identified clockwise rotation in rocks ranging in age from Jurassic-Miocene. Rotation in the Precordillera. affected larger structural blocks than in the Cordillera de la Costa. 4) The Salar Depression: a. series of arid continental basins developed on continental crust. These basins nay have originated in the Triassic, when rifting of the South American craton is thought to have taken place. In conclusion, palaeomagnetic and geological evidence is consistent with the view that the north Chilean forearc was largely under an extensional stress regime. However, the presence of extensive compressional structures in Palaeocene and older rocks in the forearc together with the currently active foreland thrust belt of Argentina. indicate that throughout the evolution of the Andean Orogen, a delicate balance between compressional and extensional tectonic regimes has existed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Borborema Province, located in northeastern Brazil, has a basement of Precambrian age and a tectonic framework structured at the Neoproterozoic (740-560 Ma). After separation between South America and Africa during the Mesozoic, a rift system was formed, giving rise to a number of marginal and inland basins in the Province. After continental breakup, episodes of volcanism and uplift characterized the evolution of the Province. Plateau uplift was initially related to magmatic underplating of mafic material at the base of the crust, perhaps related to the generation of young continental plugs (45-7 Ma) along the Macau-Queimadas Alignment (MQA), due to a small-scale convection at the continental edge. The goal of this study is to investigate the causes of intra-plate uplift and its relationship to MQA volcanism, by using broadband seismology and integrating our results with independent geophysical and geological studies in the Borborema Province. The investigation of the deep structure of the Province with broadband seismic data includes receiver functions and surface-wave dispersion tomography. Both the receiver functions and surface-wave dispersion tomography are methods that use teleseismic events and allow to develop estimates of crustal parameters such as crustal thickness, Vp/Vs ratio, and S-velocity structure. The seismograms used for the receiver function work were obtained from 52 stations in Northeast Brazil: 16 broadband stations from the RSISNE network (Rede Sismográfica do Nordeste do Brasil), and 21 short-period and 6 broadband stations from the INCT-ET network (Instituto Nacional de Ciência e Tecnologia – Estudos Tectônicos). These results add signifi- cantly to previous datasets collected at individual stations in the Province, which include station RCBR (GSN - Global Seismic Network), stations CAUB and AGBL (Brazilian Lithosphere Seismic Project IAG/USP), and 6 other broadband stations that were part of the Projeto Milênio - Estudos geofísicos e tectônicos na Província Borborema/CNPq. For the surface-wave vii tomography, seismograms recorde at 22 broadband stations were utilized: 16 broadband stations from the RSISNE network and 6 broadband stations from the Milênio project. The new constraints developed in this work include: (i) estimates of crustal thickness and bulk Vp/Vs ratio for each station using receiver functions; (ii) new measurements of surfassewave group velocity, which were integrated to existing measurementes from a continental-scale tomography for South America, and (iii) S-wave velocity models (1D) at various locations in the Borborema Province, developed through the simultaneous inversion of receiver functions and surface-wave dispersion velocities. The results display S-wave velocity structure down to the base of the crust that are consistent with the presence of a 5-7.5 km thick mafic layer. The mafic layer was observed only in the southern portion of the Plateau and absent in its northern portion. Another important observation is that our models divide the plateau into a region of thin crust (northern Plateau) and a region of thick crust (southern Plateau), confirming results from independent refraction surveys and receiver function analyses. Existing models of plateau uplift, nonetheless, cannot explain all the new observations. It is proposed that during the Brazilian orogeny a layer of preexisting mafic material was delaminated, as a whole or in part, from the original Brasiliano crust. Partial delamination would have happened in the southern portion of the plateau, where independent studies found evidence of a more resistant rheology. During Mesozoic rifting, thinning of the crust around the southern Plateau would have formed the marginal basins and the Sertaneja depression, which would have included the northern part of the Plateau. In the Cenozoic, uplift of the northern Plateau would have occurred, resulting in a northern Plateau without mafic material at the base of the crust and a southern Plateau with partially delaminated mafic layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sill and pillow complex cored on Deep Sea Drilling Project Leg 61 (Site 462) is divided into two groups, A and B types, on the basis of chemical composition and volcanostratigraphy. The A-type basalt is characterized by a higher FeO*/MgO ratio and abundant TiO2, whereas the B-type basalt is characterized by a lower FeO*/MgO ratio and scarcity of TiO2. The A type is composed of sills interbedded with hyaloclastic sediments, and the B type consists of basalt sills and pillow basalt with minor amounts of sediment. However, the structure of pillow basalts in the B type is atypical; they might be eruptive. From paleontological study of the interbedded sediments and radiometric age determination of the basalt, the volcanic event of A type is assumed to be Cenomanian to Aptian, and that of B type somewhat older. The oceanic crust in the Nauru Basin was assumed to be Oxfordian, based on the Mesozoic magnetic anomaly. Consequently, two events of intraplate volcanism are recognized. It is thus assumed that the sill-pillow complex did not come from a normal oceanic ridge, and that normal oceanic basement could therefore underlie the complex. The Site 462 basalts are quartz-normative, and strongly hypersthene-normative, and have a higher FeO*/MgO ratio and lower TiO2 content. Olivine from the Nauru Basin basalts has a lower Mg/(Mg + Fe**2+) ratio (0.83-0.84) and coexists with spinel of lower Mg/(Mg + Fe**2+) ratio when compared to olivine-spinel pairs from mid-ocean ridge (MAR) basalt. The glass of spinel-bearing basalts has a higher FeO*/(FeO* + MgO) ratio (0.58-0.60) than that of MAR (<0.575). Therefore, the Nauru Basin basalts are chemically and mineralogically distinct from ocean-ridge tholeiite. That the Nauru Basin basalts are quartz-normative and strongly hypersthene-normative and have a lower TiO2 content suggests that the basaltic liquids of Site 462 were generated at shallower depths (<5 kbar) than ocean-ridge tholeiite: Site 462 basalts are similar to basalts from the Manihiki Plateau and the Ontong-Java Plateau, but different from Hawaiian tholeiite of hot-spot type, with lower K2O and TiO2 content. We propose a new type of basalt, ocean-plateau tholeiite, a product of intraplate volcanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topography is often thought as exclusively linked to mountain ranges formed by plates collision. It is now, however, known that apart from compression, uplift and denudation of rocks may be triggered by rifting, like it happens at elevated passive margins, and away from plate boundaries by both intra-plate stress causing reactivation of older structures, and by epeirogenic movements driven by mantle dynamics and initiating long-wavelength uplift. In the Cenozoic, central west Britain and other parts of the North Atlantic margins experienced multiple episodes of rock uplift and denudation that have been variable both at spatial and temporal scales. The origin of topography in central west Britain is enigmatic, and because of its location, it may be related to any of the processes mentioned above. In this study, three low temperature thermochronometers, the apatite fission track (AFT) and apatite and zircon (U-Th-Sm)/He (AHe and ZHe, respectively) methods were used to establish the rock cooling history from 200◦C to 30◦C. The samples were collected from the intrusive rocks in the high elevation, high relief regions of the Lake District (NW England), southern Scotland and northern Wales. AFT ages from the region are youngest (55–70 Ma) in the Lake District and increase northwards into southern Scotland and southwards in north Wales (>200 Ma). AHe and ZHe ages show no systematic pattern; the former range from 50 to 80 Ma and the latter tend to record the post-emplacement cooling of the intrusions (200–400 Ma). The complex, multi-thermochronometric inverse modelling suggests a ubiquitous, rapid Late Cretaceous/early Palaeogene cooling event that is particularly marked in Lake District and Criffell. The timing and rate of cooling in southern Scotland and in northern Wales is poorly resolved as the amount of cooling was less than 60◦C. The Lake District plutons were at >110◦C prior to the early Palaeogene; cooling due to a combined effect of high heat flow, from the heat producing granite batholith, and the blanketing effect of the overlying low conductivity Late Mesozoic limestones and mudstones. Modelling of the heat transfer suggests that this combination produced an elevated geothermal gradient within the sedimentary rocks (50–70◦C/km) that was about two times higher than at the present day. Inverse modelling of the AFT and AHe data taking the crustal structure into consideration suggests that denudation was the highest, 2.0–2.5 km, in the coastal areas of the Lake District and southern Scotland, gradually decreasing to less than 1 km in the northern Southern Uplands and northern Wales. Both the rift-related uplift and the intra-plate compression poorly correlate with the timing, location and spatial distribution of the early Palaeogene denudation. The pattern of early Palaeogene denudation correlates with the thickness of magmatic underplating, if the changes of mean topography, Late Cretaceous water depth and eroded rock density are taken into consideration. However, the uplift due to underplating alone cannot fully justify the total early Palaeogene denudation. The amount that is not ex- plained by underplating is, however, roughly spatially constant across the study area and can be referred to the transient thermal uplift induced by the mantle plume arrival. No other mechanisms are required to explain the observed pattern of denudation. The onset of denudation across the region is not uniform. Denudation started at 70–75 Ma in the central part of the Lake District whereas the coastal areas the rapid erosion appears to have initiated later (65–60 Ma). This is ~10 Ma earlier than the first vol- canic manifestation of the proto-Iceland plume and favours the hypothesis of the short period of plume incubation below the lithosphere before the volcanism. In most of the localities, the rocks had cooled to temperatures lower than 30◦C by the end of the Palaeogene, suggesting that the total Neogene denudation was, at a maximum, several hundreds of metres. Rapid cooling in the last 3 million years is resolved in some places in southern Scotland, where it could be explained by glacial erosion and post-glacial isostatic uplift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploration of the Foundation Volcanic Chain (33 degrees S-131 degrees W; 37 degrees S-111 degrees W) revealed the existence of different magmatic provinces with relation to their geological settings. (1) The Pacific-Antarctic Ridge (PAR) is made up of several en echelon segments where both glassy midocean ridge basalts (MORBs) with low incompatible elements (K2O<200 ppm, Zr<120 ppm and Ce <20 ppm) as well as andesites and dacites have erupted, (2) Oblique Ridges located up to 300 lan from the PAR axis are topped with seamounts made up essentially of transitional (T) and enriched (E) MORBs with intermediate incompatible elements (K2O=0.11-0.40 %, Zr=70-140 ppm and Ce=15-30 ppm), (3) the Foundation Seamounts (FS) consisting essentially of isolated volcanoes which have erupted alkalic lavas (alkali basalt, trachybasalt and trachyandesite) with high incompatible elements (K2O (0.50-1.1 %, Zr (>150 ppm) and Ce (>48 ppm)) at about 306-1300 km from the PAR axis, (4) The Old Pacific Seamounts built on a crust older than 23 m. y. located west of longitude 124 degrees W (> 1300 km from the PAR axis) consist of T and EMORB. On the PAR axis, extensive crystal fractionation (>65%) produced the silicic lavas. On the basis of Pacific plate reconstruction using a half spreading rate of about 50 mm/yr and integrating the observed compositional changes with respect to the structural settings, it is inferred that the last volcanic events giving rise to the FS took place at about 110 km from the PAR axis about 5 m. y. ago. The Oblique Ridges built between 5 m. y. and <1 m. y. are believed to represent ancient leaky transforms and/or large discontinuities between accreting ridge segments filled by volcanic cones during the interaction (mixing) of the enriched plume components of the FS with PAR depleted (MORB type) magmatism. The Old Pacific Seamounts built on ancient crust (>23 m. y.) with MORB volcanics comparable to those of the the Oblique Ridge-PAR provinces, could also have been formed by an interaction between the Foundation Seamount (dredge site 28) hotspot magmatism and that of an ancient accreting ridge magmatism precursor of the PAR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work introduces two novel approaches for the application of luminescence dating techniques to Quaternary volcanic eruptions: crystalline xenoliths from lava flows are demonstrated to be basically suitable for luminescence dating, and a set of phreatic explosion deposits from the Late Quaternary Vakinankaratra volcanic field in central Madagascar is successfully dated with infrared stimulated luminescence (IRSL). Using a numerical model approach and experimental verification, the potential for thermal resetting of luminescence signals of xenoliths in lava flows is demonstrated. As microdosimetry is an important aspect when using sample material extracted from crystalline whole rocks, autoradiography using image plates is introduced to the field of luminescence dating as a method for detection and assessment of spatially resolved radiation inhomogeneities. Determinations of fading rates of feldspar samples have been observed to result in aberrant g-values if the pause between preheat and measurement in the delayed measurements was kept short. A systematic investigation reveals that the phenomenon is caused by the presence of three signal components with differing individual fading behaviour. As this is restricted to short pauses, it is possible to determine a minimal required delay between preheating and measurement after which the aberrant behaviour disappears. This is applied in the measuring of 12 samples from phreatic explosion deposits from the Antsirabe – Betafo region in the Late Quaternary Vakinankaratra volcanic field. The samples were taken from stratigraphically correlatable sections and appear to represent at least three phreatic events, one of which created the Lac Andraikiba maar near Antsirabe. The obtained ages indicate that the eruptive activity in the region started in the Late Pleistocene between 113.9 and 99.6 ka. A second layer in the Betafo area is dated at approximately 73 ka and the Lac Andraikiba deposits give an age between 63.9 and 50.7 ka. The youngest phreatic layer is dated between 33.7 and 20.7 ka. These ages are the first recorded direct ages of such volcanic deposits, as well as the first and only direct ages for the Late Quaternary volcanism in the Vakinankaratra volcanic field. This illustrates the huge potential of this new method for volcanology and geochronology, as it enables direct numerical dating of a type of volcanic deposit which has not been successfully directly dated by any other method so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Deccan Volcanic Province (DVP) was built up by three major phases of eruptions; the most voluminous of which, the Deccan Phase 2, encompassed the Cretaceous–Palaeogene (KT) boundary. Deccan eruptions have been implicated as a contributor to the end-Cretaceous mass extinction, however, mechanism by which volcanic activity affected biota remains poorly understood. We applied a combination of rock magnetic techniques scanning electron microscopy to characterize mineral assemblages of three sections of intertrappean lacustrine sediments from the north-western Maharashtra Deccan Volcanic Provinces. Our results indicate that in sediments deposited during the early stages of the Deccan Phase 2, the Daïwal River and Dhapewada sequences, iron-bearing mineral association is dominated by detrital iron oxides (magnetite and hematite) sourced from the weathering of the surrounding basaltic bedrocks, with minor contribution form authigenic iron sulphides (framboidal pyrite, pyrrhotite and/or greigite). The sediments deposited during the final stages of Phase 2 (the Podgawan sequence) differ significantly in their characteristics. In particular, the Podgawan sediments have 1) very low magnetic susceptibility values, but higher terrigenous fraction (clays and shales) content; 2) more complex assemblage of magnetic minerals, 3) ubiquitous presence of Fe–Ca–Ce vanadates; and 4) unusual lithological variations in the middle part of the section (represented by a charcoal-rich level that is capped by a red clay layer containing fossilized bacterial colonies). We suggest that these unusual characteristics reflect increased acidity in the region during the deposition of the Podgawan sequence, likely due to cumulative effects of volcanic aerosols released during the Deccan Phase 2 eruptions. The combination of these features may be used to recognize episodes of increased acidity in the geological record. Our results also contribute to understanding of local vs. global effects of the Deccan volcanism.