944 resultados para Membrane Protein
Resumo:
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.
Resumo:
The death-inducing receptor Fas is activated when cross-linked by the type II membrane protein Fas ligand (FasL). When human soluble FasL (sFasL, containing the extracellular portion) was expressed in human embryo kidney 293 cells, the three N-linked glycans of each FasL monomer were found to be essential for efficient secretion. Based on the structure of the closely related lymphotoxin alpha-tumor necrosis factor receptor I complex, a molecular model of the FasL homotrimer bound to three Fas molecules was generated using knowledge-based protein modeling methods. Point mutations of amino acid residues predicted to affect the receptor-ligand interaction were introduced at three sites. The F275L mutant, mimicking the loss of function murine gld mutation, exhibited a high propensity for aggregation and was unable to bind to Fas. Mutants P206R, P206D, and P206F displayed reduced cytotoxicity toward Fas-positive cells with a concomitant decrease in the binding affinity for the recombinant Fas-immunoglobulin Fc fusion proteins. Although the cytotoxic activity of mutant Y218D was unaltered, mutant Y218R was inactive, correlating with the prediction that Tyr-218 of FasL interacts with a cluster of three basic amino acid side chains of Fas. Interestingly, mutant Y218F could induce apoptosis in murine, but not human cells.
Resumo:
miR-21 is the most commonly over-expressed microRNA (miRNA) in cancer and a proven oncogene. Hsa-miR-21 is located on chromosome 17q23.2, immediately downstream of the vacuole membrane protein-1 (VMP1) gene, also known as TMEM49. VMP1 transcripts initiate ∼130 kb upstream of miR-21, are spliced, and polyadenylated only a few hundred base pairs upstream of the miR-21 hairpin. On the other hand, primary miR-21 transcripts (pri-miR-21) originate within the last introns of VMP1, but bypass VMP1 polyadenylation signals to include the miR-21 hairpin. Here, we report that VMP1 transcripts can also bypass these polyadenylation signals to include miR-21, thus providing a novel and independently regulated source of miR-21, termed VMP1–miR-21. Northern blotting, gene-specific RT-PCR, RNA pull-down and DNA branching assays support that VMP1–miR-21 is expressed at significant levels in a number of cancer cell lines and that it is processed by the Microprocessor complex to produce mature miR-21. VMP1 and pri-miR-21 are induced by common stimuli, such as phorbol-12-myristate-13-acetate (PMA) and androgens, but show differential responses to some stimuli such as epigenetic modifying agents. Collectively, these results indicate that miR-21 is a unique miRNA capable of being regulated by alternative polyadenylation and two independent gene promoters.
Resumo:
Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons.
Resumo:
Background: In a previous study, we demonstrated that Vibrio scophthalmi, the most abundant Vibrio species among the marine aerobic or facultatively anaerobic bacteria inhabiting the intestinal tract of healthy cultured turbot (Scophthalmus maximus), contains at least two quorum-sensing circuits involving two types of signal molecules (a 3-hydroxy-dodecanoyl-homoserine lactone and the universal autoinducer 2 encoded by luxS). The purpose of this study was to investigate the functions regulated by these quorum sensing circuits in this vibrio by constructing mutants for the genes involved in these circuits. Results. The presence of a homologue to the Vibrio harveyi luxR gene encoding a main transcriptional regulator, whose expression is modulated by quorumsensing signal molecules in other vibrios, was detected and sequenced. The V. scophthalmi LuxR protein displayed a maximum amino acid identity of 82% with SmcR, the LuxR homologue found in Vibrio vulnificus. luxR and luxS null mutants were constructed and their phenotype analysed. Both mutants displayed reduced biofilm formation in vitro as well as differences in membrane protein expression by mass-spectrometry analysis. Additionally, a recombinant strain of V. scophthalmi carrying the lactonase AiiA from Bacillus cereus, which causes hydrolysis of acyl homoserine lactones, was included in the study. Conclusions: V. scophthalmi shares two quorum sensing circuits, including the main transcriptional regulator luxR, with some pathogenic vibrios such as V. harveyi and V. anguillarum. However, contrary to these pathogenic vibrios no virulence factors (such as protease production) were found to be quorum sensing regulated in this bacterium. Noteworthy, biofilm formation was altered in luxS and luxR mutants. In these mutants a different expression profile of membrane proteins were observed with respect to the wild type strain suggesting that quorum sensing could play a role in the regulation of the adhesion mechanisms of this bacterium.
Resumo:
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.
Resumo:
Biofilms are surface-attached multispecies microbial communities that are embedded by their self-produced extracellular polymeric substances. This lifestyle enhances the survival of the bacteria and plays a major role in many chronic bacterial infections. For instance, periodontitis is initiated by multispecies biofilms. The phases of active periodontal tissue destruction and notably increased levels of proinflammatory mediators, such as the key inflammatory mediator interleukin (IL)-1beta, are typical of the disease. The opportunistic periodontal pathogen Aggregatibacter actinomycetemcomitans is usually abundant at sites of aggressive periodontitis. Despite potent host immune system responses to subgingival invaders, A. actinomycetemcomitans is able to resist clearance attempts. Moreover, some strains of A. actinomycetemcomitans can generate genetic diversity through natural transformation, which may improve the species’ adjustment tothe subgingival environment in the long term. Some biofilm forming species are known to bind and sense human cytokines. As a response to cytokines, bacteria may increase biofilm formation and alter their expression of virulence genes. Specific outer membrane receptors for interferon-γ or IL-1β have been characterised in two Gram-negative pathogens. Because little is known about periodontal pathogens’ ability to sense cytokines, we used A. actinomycetemcomitans as a model organism to investigate how the species responds to IL-1beta. The main aims of this thesis were to explore cytokine binding on single-species A. actinomycetemcomitans biofilms and to determine the effects of cytokines on the biofilm formation and metabolic activity of the species. Additionally, the cytokine’s putative internalisation and interaction with A. actinomycetemcomitans proteins were studied. The possible impact of biofilm IL-1beta sequestering on the proliferation and apoptosis of gingival keratinocyte cells was evaluated in an organotypic mucosa co-culture model. Finally, the role of the extramembranous domain of the outer membrane protein HofQ (emHofQ) in DNA binding linked to DNA uptake in A. actinomycetemcomitans was examined. Our main finding revealed that viable A. actinomycetemcomitans biofilms can bind and take up the IL-1β produced by gingival cells. At the sites of pathogen-host interaction, the proliferation and apoptosis of gingival keratinocytes decreased slightly. Notably, the exposure of biofilms to IL-1beta caused their metabolic activity to drop, which may be linked to the observed interaction of IL-1beta with the conserved intracellular proteins DNA binding protein HU and the trimeric form of ATP synthase subunit beta. A Pasteurellaceaespecific lipoprotein, which had no previously determined function, was characterized as an IL-1beta interacting membrane protein that was expressed in the biofilm cultures of all tested A. actinomycetemcomitans strains. The use of a subcellular localisation tool combined with experimental analyses suggested that the identified lipoprotein, bacterial interleukin receptor I (BilRI), may be associated with the outer membrane with a portion of the protein oriented towards the external milieu. The results of the emHofQ study indicated that emHofQ has both the structural and functional capability to bind DNA. This result implies that emHofQ plays a role in DNA assimilation. The results from the current study also demonstrate that the Gram-negative oral species appears to sense the central proinflammatory mediator IL-1beta.
Resumo:
Resistance to anticancer drugs is a major cause of failure of many therapeutic protocols. A variety of mechanisms have been proposed to explain this phenomenon. The exact mechanism depends upon the drug of interest as well as the tumor type treated. While studying a cell line selected for its resistance to cisplatin we noted that the cells expressed a >25,000-fold collateral resistance to methotrexate. Given the magnitude of this resistance we elected to investigate this intriguing collateral resistance. From a series of investigations we have identified an alteration in a membrane protein of the resistant cell as compared to the sensitive cells that could be the primary mechanism of resistance. Our studies reviewed here indicate decreased tyrosine phosphorylation of a protein (molecular mass = 66) in the resistant cells, which results in little or no transfer of methotrexate from the medium into the cell. Since this is a relatively novel function for tyrosine phosphorylation, this information may provide insight into possible pharmacological approaches to modify therapeutic regimens by analyzing the status of this protein in tumor samples for a better survival of the cancer patients.
Resumo:
Hereditary spherocytosis (HS) is a common inherited anemia characterized by the presence of spherocytic red cells. Defects in several membrane protein genes have been involved in the pathogenesis of HS. ß-Spectrin-related HS seems to be common. We report here a new mutation in the ß-spectrin gene coding region in a patient with hereditary spherocytosis. The patient presented acanthocytosis and spectrin deficiency and, at the DNA level, a novel frameshift mutation leading to HS, i.e., a C deletion at codon 1392 (ß-spectrin São PauloII), exon 20. The mRNA encoding ß-spectrin São PauloII was very unstable and the mutant protein was not detected in the membrane or in other cellular compartments. It is interesting to note that frameshift mutations of the ß-spectrin gene at the 3' end allow the insertion of the mutant protein in the red cell membrane, leading to a defect in the auto-association of the spectrin dimers and consequent elliptocytosis. On the other hand, ß-spectrin São PauloII protein was absent in the red cell membrane, leading to spectrin deficiency, HS and the presence of acanthocytes.
Resumo:
Nasopharyngeal carcinoma (NPC) is notorious for the metastases, which are in close association with Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Arsenic trioxide (As2O3) has been shown to induce apoptosis and differentiation in NPC xenografts. Then, can it repress the cancer cells' metastasis potential? To elucidate this issue, the present study was performed. LMP1-negative cell line HNE1 and LMP1-positive cell line HNE1-LMP1 were used as in vitro model. Cells (1 x 10(5)/mL) were cultured with or without 3 µM As2O3 for 48 h. Then the survival cells were collected to investigate their potential of colony formation, attachment, invasion, and migration. Both confocal immunofluorescence staining and Western blot were used to detect the changes of LMP1 expression. The changes of MMP-9 were examined by RT-PCR assay and Western blot. The results were as follow: i) the colony formation inhibition rate (75.41 ± 3.9% in HNE1-LMP1 cells vs 37.89 ± 4.9% in HNE1 cells), the rate of attachment (HNE1-LMP1 vs HNE1: 56.40 ± 3.5 vs 65.87 ± 5.9%), the invasion inhibitory rate (HNE1-LMP1 vs HNE1: 56.50 ± 3.7 and 27.91 ± 2.1%), and the migration inhibitory rate (HNE1-LMP1 vs HNE1: 48.70 ± 3.9 vs 29.19 ± 6.27%) were all significantly different between the two cell lines (P < 0.01). ii) LMP1 was down-regulated in As2O3-treated HNE1-LMP1 cells. iii) The reduction of MMP-9 was found in As2O3-treated groups, more evident in HNE1-LMP1 cells. Thus, we conclude that As2O3 can reduce metastasis potential of NPC cells, involving inhibition of MMP-9 expression. LMP1 were also reduced in this process and seemed to enhance anti-metastasis activity of As2O3.
Resumo:
To find Epstein-Barr virus (EBV) strains with genetic variations of EBV latent membrane protein 1 (EBV-LMP1) from nasopharyngeal carcinoma (NPC), the full-length DNA of LMP1 genes from 21 NPC biopsies obtained in Hunan province in southern China was amplified and sequenced. Our sequences were compared to those previously reported by the Clustal V method. Results showed that all 21 sequences displayed two amino acid changes most frequently in LMP1 of CD4+ T cell epitopes at codons 144 (F®I, 21/21) and 212 (G®S, 19/21) or (G®N, 2/21). We also show that type A EBV strain is prevalent in the cases of NPC from Hunan province with a 30-bp 18/21 deletion, and we highlight that this deletion resulted in loss of one of the CD4+ T cell-restricted epitopes. The other 3 sequences without this deletion all had a change at codon 344 (G®D). Furthermore, in the major epitope sequence of CD8+ T cells restricted by HLA-A2, all 21 sequences showed changes at codons 126 (L®F) and 129 (M®I). Our study discovered that one of the 21 sequence variations harbored a new change at codon 131 (W®C), and 5/21 specimens showed another novel change at codon 115 (G®A) in the major epitope sequence of CD8+ T cells restricted by HLA-A2. Our study suggests that these sequence variations of NPC-derived LMP1 may lead to a potential escape from host cell immune recognition, protecting latent EBV infection and causing an increase in tumorigenicity.