995 resultados para Medical innovations
Resumo:
(pdf contains 23 pages)
Resumo:
Validation is important in the design, development and production of medical devices since effective and appropriate validation plays a vital role in defining the success of a product in both technical and economic terms. Regulations and quality standards lay out the requirements for product validation, but it is left to each individual manufacturer to establish and maintain their own validation procedures. More recently, there has also been a change of emphasis in the regulations and standards that encourage the integration of validation into the development process. However, this poses particular challenges to the manufacturer since there is a distinct lack of guidance to assist this integration. This workbook provides the first real guidance on good design practices for medical device development. It has been developed through extensive consultation with device manufacturers and analysis of regulatory requirements. The approach is intended to assist manufacturers in meeting the new regulations.
Resumo:
Optical microscopy has become an indispensable tool for biological researches since its invention, mostly owing to its sub-cellular spatial resolutions, non-invasiveness, instrumental simplicity, and the intuitive observations it provides. Nonetheless, obtaining reliable, quantitative spatial information from conventional wide-field optical microscopy is not always intuitive as it appears to be. This is because in the acquired images of optical microscopy the information about out-of-focus regions is spatially blurred and mixed with in-focus information. In other words, conventional wide-field optical microscopy transforms the three-dimensional spatial information, or volumetric information about the objects into a two-dimensional form in each acquired image, and therefore distorts the spatial information about the object. Several fluorescence holography-based methods have demonstrated the ability to obtain three-dimensional information about the objects, but these methods generally rely on decomposing stereoscopic visualizations to extract volumetric information and are unable to resolve complex 3-dimensional structures such as a multi-layer sphere.
The concept of optical-sectioning techniques, on the other hand, is to detect only two-dimensional information about an object at each acquisition. Specifically, each image obtained by optical-sectioning techniques contains mainly the information about an optically thin layer inside the object, as if only a thin histological section is being observed at a time. Using such a methodology, obtaining undistorted volumetric information about the object simply requires taking images of the object at sequential depths.
Among existing methods of obtaining volumetric information, the practicability of optical sectioning has made it the most commonly used and most powerful one in biological science. However, when applied to imaging living biological systems, conventional single-point-scanning optical-sectioning techniques often result in certain degrees of photo-damages because of the high focal intensity at the scanning point. In order to overcome such an issue, several wide-field optical-sectioning techniques have been proposed and demonstrated, although not without introducing new limitations and compromises such as low signal-to-background ratios and reduced axial resolutions. As a result, single-point-scanning optical-sectioning techniques remain the most widely used instrumentations for volumetric imaging of living biological systems to date.
In order to develop wide-field optical-sectioning techniques that has equivalent optical performance as single-point-scanning ones, this thesis first introduces the mechanisms and limitations of existing wide-field optical-sectioning techniques, and then brings in our innovations that aim to overcome these limitations. We demonstrate, theoretically and experimentally, that our proposed wide-field optical-sectioning techniques can achieve diffraction-limited optical sectioning, low out-of-focus excitation and high-frame-rate imaging in living biological systems. In addition to such imaging capabilities, our proposed techniques can be instrumentally simple and economic, and are straightforward for implementation on conventional wide-field microscopes. These advantages together show the potential of our innovations to be widely used for high-speed, volumetric fluorescence imaging of living biological systems.
Resumo:
James Joyce’s Ulysses celebrates all facets of daily life in its refusal to censor raw human emotions and emissions. He adopts a critically medical perspective to portray this honest, unfiltered narrative. In doing so, he reveals the ineffectiveness of the physician-patient relationship due to doctors’ paternalistic attitudes that hinder nonjudgmental, open listening of this unfiltered narrative. His exploration of the doctor’s moral scrutiny, cultural prejudices, and authoritative estrangement from the patient underscore the importance in remembering that physicians and patients alike are ultimately just fellow human beings. Wryly, he drives this point to literal nausea, as his narrative proudly asserts the revulsive details of public health, digestion, and death. In his gritty ruminations on the human body’s material reality, Joyce mocks the physician’s highbrow paternalism by forcing him to identify with the farting, vomiting, decaying bodies around him. In celebrating the uncensored human narrative, Joyce challenges physician and patient alike to openly listen to the stories of others.