942 resultados para Maximal oxygen consumption
Resumo:
This study compares the effects of two short multiple-sprint exercise (MSE) (6 × 6 s) sessions with two different recovery durations (30 s or 180 s) on the slow component of oxygen uptake ([Formula: see text]O(2)) during subsequent high-intensity exercise. Ten male subjects performed a 6-min cycling test at 50% of the difference between the gas exchange threshold and [Formula: see text]O(2peak) (Δ50). Then, the subjects performed two MSEs of 6 × 6 s separated by two intersprint recoveries of 30 s (MSE(30)) and 180 s (MSE(180)), followed 10 min later by the Δ50 (Δ50(30) and Δ50(180), respectively). Electromyography (EMG) activities of the vastus medialis and lateralis were measured throughout each exercise bout. During MSE(30), muscle activity (root mean square) increased significantly (p ≤ 0.04), with a significant leftward-shifted median frequency of the power density spectrum (MDF; p ≤ 0.01), whereas MDF was significantly rightward-shifted during MSE(180) (p = 0.02). The mean [Formula: see text]O(2) value was significantly higher in MSE(30) than in MSE(180) (p < 0.001). During Δ50(30), [Formula: see text]O(2) and the deoxygenated hemoglobin ([HHb]) slow components were significantly reduced (-27%, p = 0.02, and -34%, p = 0.003, respectively) compared with Δ50. There were no significant modifications of the [Formula: see text]O(2) slow component in Δ50(180) compared with Δ50 (p = 0.32). The neuromuscular and metabolic adaptations during MSE(30) (preferential activation of type I muscle fibers evidenced by decreased MDF and a greater aerobic metabolism contribution to the required energy demands), but not during MSE(180), may lead to reduced [Formula: see text]O(2) and [HHb] slow components, suggesting an alteration in motor units recruitment profile (i.e., change in the type of muscle fibers recruited) and (or) an improved muscle O(2) delivery during subsequent exercise.
Resumo:
This study aimed to compare O2 consumption (VO2) determination by the gas-exchange (VO2GE) and Fick (VO2F) methods in cardiac surgical patients. A total of 10 mechanically ventilated postoperative patients were studied prospectively. Thermodilution was performed using three randomly applied techniques: room temperature saline injected at end expiration, room temperature saline randomly injected in the respiratory cycle, and iced saline injected at end expiration. The influence of the number of thermodilution determinations was assessed by comparing results from 2 and 10 injections. The variability of VO2F was greater than that of VO2GE. There was no bias between VO2GE and VO2F values using injectate at room temperature. Accuracy and precision were not improved by increasing the number of cardiac output determinations from 2 to 10. A significant bias was observed using ice-cold injectate, VO2F being 18.0 +/- 15.4 ml/min/m2 lower than VO2GE (p = 0.001). Published results when comparing VO2F and VO2GE are discrepant. However, a significant bias was found in all studies using cold injectate, with lower VO2F values. We conclude that iced injectate should not be used to assess VO2 in critically ill patients.
Resumo:
The effect of intramyocellular lipids (IMCLs) on endurance performance with high skeletal muscle glycogen availability remains unclear. Previous work has shown that a lipid-supplemented high-carbohydrate (CHO) diet increases IMCLs while permitting normal glycogen loading. The aim of this study was to assess the effect of fat supplementation on fat oxidation (Fox) and endurance performance. Twenty-two trained male cyclists performed 2 simulated time trials (TT) in a randomized crossover design. Subjects cycled at ∼53% maximal voluntary external power for 2 h and then followed 1 of 2 diets for 2.5 days: a high-CHO low-fat (HC) diet, consisting of CHO 7.4 g·kg(-1)·day(-1) and fat 0.5 g·kg(-1)·day(-1); or a high-CHO fat-supplemented (HCF) diet, which was a replication of the HC diet with ∼240 g surplus fat (30% saturation) distributed over the last 4 meals of the diet period. On trial morning, fasting blood was sampled and Fox was measured during an incremental exercise; a ∼1-h TT followed. Breath volatile compounds (VOCs) were measured at 3 time points. Mental fatigue, measured as reaction time, was evaluated during the TT. Plasma free fatty acid concentration was 50% lower after the HCF diet (p < 0.0001), and breath acetone was reduced (p < 0.05) "at rest". Fox peaked (∼0.35 g·kg(-1)) at ∼42% peak oxygen consumption, and was not influenced by diet. Performance was not significantly different between the HCF and HC diets (3369 ± 46 s vs 3398 ± 48 s; p = 0.39), nor were reaction times to the attention task and VOCs (p = NS for both). In conclusion, the short-term intake of a lipid supplement in combination with a glycogen-loading diet designed to boost intramyocellular lipids while avoiding fat adaptation did not alter substrate oxidation during exercise or 1-hour cycling performance.
Resumo:
Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.
Resumo:
We determined the response characteristics and functional correlates of the dynamic relationship between the rate (Δ) of oxygen consumption ( O2) and the applied power output (work rate = WR) during ramp-incremental exercise in patients with mitochondrial myopathy (MM). Fourteen patients (7 males, age 35.4 ± 10.8 years) with biopsy-proven MM and 10 sedentary controls (6 males, age 29.0 ± 7.8 years) took a ramp-incremental cycle ergometer test for the determination of the
O2 on-exercise mean response time (MRT) and the gas exchange threshold (GET). The Δ
O2/ΔWR slope was calculated up to GET (S1), above GET (S2) and over the entire linear portion of the response (S T). Knee muscle endurance was measured by isokinetic dynamometry. As expected, peak
O2 and muscle performance were lower in patients than controls (P < 0.05). Patients had significantly lower Δ
O2/ΔWR than controls, especially the S2 component (6.8 ± 1.5 vs 10.3 ± 0.6 mL·min-1·W-1, respectively; P < 0.001). There were significant relationships between Δ
O2/ΔWR (S T) and muscle endurance, MRT-
O2, GET and peak
O2 in MM patients (P < 0.05). In fact, all patients with Δ
O2/ΔWR below 8 mL·min-1·W-1 had severely reduced peak
O2 values (<60% predicted). Moreover, patients with higher cardiopulmonary stresses during exercise (e.g., higher Δ ventilation/carbon dioxide output and Δ heart rate/Δ
O2) had lower Δ
O2/ΔWR (P < 0.05). In conclusion, a readily available, effort-independent index of aerobic dysfunction during dynamic exercise (Δ
O2/ΔWR) is typically reduced in patients with MM, being related to increased functional impairment and higher cardiopulmonary stress.
Resumo:
Exercise intolerance due to impaired oxidative metabolism is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still uncertain whether L-carnitine supplementation is beneficial for patients with MM. The aim of our study was to investigate the effects of L-carnitine on exercise performance in MM. Twelve MM subjects (mean age±SD=35.4±10.8 years) with chronic progressive external ophthalmoplegia (CPEO) were first compared to 10 healthy controls (mean age±SD=29±7.8 years) before they were randomly assigned to receive L-carnitine supplementation (3 g/daily) or placebo in a double-blind crossover design. Clinical status, body composition, respiratory function tests, peripheral muscle strength (isokinetic and isometric torque) and cardiopulmonary exercise tests (incremental to peak exercise and at 70% of maximal), constant work rate (CWR) exercise test, to the limit of tolerance [Tlim]) were assessed after 2 months of L-carnitine/placebo administration. Patients with MM presented with lower mean height, total body weight, fat-free mass, and peripheral muscle strength compared to controls in the pre-test evaluation. After L-carnitine supplementation, the patients with MM significantly improved their Tlim (14±1.9 vs 11±1.4 min) and oxygen consumption ( V ˙ O 2 ) at CWR exercise, both at isotime (1151±115 vs 1049±104 mL/min) and at Tlim (1223±114 vs 1060±108 mL/min). These results indicate that L-carnitine supplementation may improve aerobic capacity and exercise tolerance during high-intensity CWRs in MM patients with CPEO.
Resumo:
This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET), pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP), maximal oxygen uptake (V˙O2max), peak treadmill speed (PTS), and energy systems contribution; and a 10-km running time trial (T10-km) to determine endurance performance. The fractions of the aerobic (WAER) and glycolytic (WGLYCOL) contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2maxand PTS (P<@0.05), and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05). In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01) and final (P<0.01) sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race.
Resumo:
The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.
Resumo:
The aim of this study was to measure the energy expenditure for locomotor activities usually performed by soccer referees during a match (walking, jogging, and running) under laboratory conditions, and to compare forward with backward movements. The sample was composed by 10 male soccer referees, age 29±7.8 years, body mass 77.5±6.2 kg, stature 1.78±0.07 m and professional experience of 7.33±4.92 years. Referees were evaluated on two separate occasions. On the first day, maximal oxygen uptake (VO2max) was determined by a maximal treadmill test, and on the second day, the oxygen consumption was determined in different speeds of forward and backward movements. The mean VO2max was 41.20±3.60 mL·kg-1·min-1 and the mean heart rate achieved in the last stage of the test was 190.5±7.9 bpm. When results of forward and backward movements were compared at 1.62 m/s (walking speed), we found significant differences in VO2, in metabolic equivalents, and in kcal. However, the same parameters in forward and backward movements at jogging velocities (2.46 m/s) were not significantly different, showing that these motor activities have similar intensity. Backward movements at velocities equivalent to walking and jogging are moderate-intensity activities, with energy expenditure less than 9 kcal. Energy expenditure was overestimated by at least 35% when calculated by mathematical equations. In summary, we observed that backward movements are not high-intensity activities as has been commonly reported, and when calculated using equations available in the literature, energy expenditure was overestimated compared to the values obtained by indirect calorimetry.
Resumo:
La pratique d’activité physique fait partie intégrante des recommandations médicales pour prévenir et traiter les maladies coronariennes. Suivant un programme d’entraînement structuré, serait-il possible d’améliorer la réponse à l’exercice tout en offrant une protection cardiaque au patient? C’est ce que semblent démontrer certaines études sur le préconditionnement ischémique (PCI) induit par un test d’effort maximal. Les mêmes mécanismes physiologiques induits par le PCI sont également observés lorsqu’un brassard est utilisé pour créer des cycles d’ischémie/reperfusion sur un muscle squelettique. Cette méthode est connue sous l’appellation : préconditionnement ischémique à distance (PCID). À l’autre extrémité du spectre de l’activité physique, des sportifs ont utilisé le PCDI durant leur échauffement afin d’améliorer leurs performances. C’est dans l’objectif d’étudier ces prémisses que se sont construits les projets de recherches suivants. La première étude porte sur les effets du PCID sur des efforts supra maximaux de courte durée. Les sujets (N=16) ont exécuté un test alactique (6 * 6 sec. supra maximales) suivi d’un test lactique (30 secondes supra maximales) sur ergocycle. Les sujets avaient été aléatoirement assignés à une intervention PCID ou à une intervention contrôle (CON) avant d’entreprendre les efforts. La procédure PCID consiste à effectuer quatre cycles d’ischémie de cinq minutes à l’aide d’un brassard insufflé à 50 mm Hg de plus que la pression artérielle systolique sur le bras. Les résultats de ce projet démontrent que l’intervention PCID n’a pas d’effets significatifs sur l’amélioration de performance provenant classiquement du « système anaérobie », malgré une légère hausse de la puissance maximal en faveur du PCID sur le test de Wingate de trente secondes (795 W vs 777 W) et sur le test de force-vitesse de six secondes (856 W vs 847 W). Le deuxième essai clinique avait pour objectif d’étudier les effets du PCID, selon la méthode élaborée dans le premier projet, lors d’un effort modéré de huit minutes (75 % du seuil ventilatoire) et un effort intense de huit minutes (115 % du seuil ventilatoire) sur les cinétiques de consommation d’oxygène. Nos résultats démontrent une accélération significative des cinétiques de consommation d’oxygène lors de l’intervention PCID par rapport au CON aux deux intensités d’effort (valeur de τ1 à effort modéré : 27,2 ± 4,6 secondes par rapport à 33,7 ± 6,2, p < 0,01 et intense : 29,9 ± 4,9 secondes par rapport à 33,5 ± 4,1, p < 0,001) chez les sportifs amateurs (N=15). Cela se traduit par une réduction du déficit d’oxygène en début d’effort et une atteinte plus rapide de l’état stable. Le troisième projet consistait à effectuer une revue systématique et une méta-analyse sur la thématique du préconditionnement ischémique (PCI) induit par un test d’effort chez les patients coronariens utilisant les variables provenant de l’électrocardiogramme et des paramètres d’un test d’effort. Notre recherche bibliographique a identifié 309 articles, dont 34 qui ont été inclus dans la méta-analyse, qui représente un lot de 1 053 patients. Nos analyses statistiques démontrent que dans un effort subséquent, les patients augmentent leur temps avant d’atteindre 1 mm de sous-décalage du segment ST de 91 secondes (p < 0,001); le sous-décalage maximal diminue de 0,38 mm (p < 0,01); le double produit à 1 mm de sous-décalage du segment ST augmente de 1,80 x 103 mm Hg (p < 0,001) et le temps total d’effort augmente de 50 secondes (p < 0,001). Nos projets de recherches ont favorisé l’avancement des connaissances en sciences de l’activité physique quant à l’utilisation d’un brassard comme stimulus au PCID avant un effort physique. Nous avons évalué l’effet du PCID sur différentes voies métaboliques à l’effort pour conclure que la méthode pourrait accélérer les cinétiques de consommation d’oxygène et ainsi réduire la plage du déficit d’oxygène. Nos découvertes apportent donc un éclaircissement quant à l’amélioration des performances de type contre-la-montre étudié par d’autres auteurs. De plus, nous avons établi des paramètres cliniques permettant d’évaluer le PCI induit par un test d’effort chez les patients coronariens.
Resumo:
The objective of this thesis was to quantify the physiological responses such as O2 uptake (VO2), heart rate (HR) and blood lactate ([LA]) to some types of activities associated with intermittent sports in athletes. Our hypothesis is that the introduction of accelerations and decelerations with or without directional changes results in a significative increase of the oxygen consumption, heart rate and blood lactate. The purpose of the first study was to measure and compare the VO2 and the HR of 6 on-court tennis drills at both high and low displacement speeds. These drills were done with and without striking the ball, over full and half-width court, in attack or in defense mode, using backhand or forehand strokes. Results show that playing an attacking style requires 6.5% more energy than playing a defensive style (p < 0.01) and the backhand stroke required 7% more VO2 at low speed than forehand stroke (p < 0.05) while the additional cost of striking the ball lies between 3.5 and 3.0 mL kg-1 min-1. Finally, while striking the ball, the energy expanded during a shuttle displacement on half-width court is 14% higher than running on full-width court. Studies #2 and #3 focused on different modes of displacement observed in irregular sports. The objective of the second study was to measure and compare VO2, HR and [LA] responses to randomly performed multiple fractioned runs with directional changes (SR) and without directional changes (FR) to those of in-line running (IR) at speeds corresponding to 60, 70 and 80% of the subject’s maximal aerobic speed (MAS). All results show that IR’s VO2 was significantly lower than SR’s and FR’s (p<0.05). SR’s VO2 was greater than FR’s only at speeds corresponding to 80%MAS. On the other hand, HR was similar in SR and FR but significantly higher than IR’s (p<0.05). [LA] varied between 4.2 ± 0.8 and 6.6 ± 0.9 mmol L-1 without significant differences between the 3 displacement modes. Finally, the third study’s objective was to measure and compare VO2 , HR and [LA] responses during directional changes at different angles and at different submaximal running speeds corresponding to 60, 70 and 80% MAS. Subjects randomly performed 4 running protocols 1) a 20-m shuttle running course (180°) (SR), 2) an 8-shaped running course with 90-degree turns every 20 m (90R), 3) a Zigzag running course (ZZR) with multiple close directional changes (~ 5 m) at different angle values of 91.8°, 90° and 38.6°, 4) an In-line run (IR) for comparison purposes. Results show that IR’s was lower (p<0.001) than for 90R’s, SR’s and ZZR’s at all intensities. VO2 obtained at 60 and 70%MAS was 48.7 and 38.1% higher during ZZR when compared to IR while and depending on the intensity, during 90R and SR was between 15.5 and 19.6% higher than during IR. Also, ZZR’s VO2 was 26.1 and 19.5% higher than 90R’s, 26.1 and 15.5% higher than SR’s at 60 and 70%MAS. SR’s and 90R’s VO2 were similar. Changing direction at a 90° angle and at 180° angle seem similar when compared to continuous in-line running. [LA] levels were similar in all modalities. Overall, the studies presented in this thesis allow the quantification of the specific energetic demands of certain types of displacement modes in comparison with conventional forward running. Also, our results confirm that the energy cost varies and increase with the introduction of accelerations and decelerations with and without directional changes.
Resumo:
Los bomberos aeronáuticos son los encargados de atender todas las emergencias en los aeropuertos y sus cercanías. Estas emergencias incluyen emergencias aéreas, en tierra, eventos con materiales peligros e incendios, entre otros. Su trabajo tiene como características la realización de actividades durante periodos largos de baja intensidad y periodos cortos de alta intensidad. De acuerdo con estas características, es necesario que los bomberos aeronáuticos tengan una buena condición física. El consumo máximo de oxígeno (VO2 máx) como indicador de capacidad aeróbica resulta indispensable para conocer el desempeño de los bomberos en su trabajo. El objetivo de este estudio es determinar la capacidad aeróbica de los bomberos aeronáuticos y sus factores determinantes. Por tanto se desarrolló un estudio transversal de tipo descriptivo en una muestra de 23 hombres bomberos aeronáuticos. Se obtuvo información acerca de sus variables socio-demográficas, se determinó el VO2 máx y umbral ventilatorio mediante análisis de gases espirados durante un protocolo de ejercicio máximo sobre tapiz rodante, se evaluó la composición corporal mediante adipometría y se determinó el nivel de actividad física mediante el cuestionario internacional de actividad física IPAQ. Se encontró que la muestra tenia una edad de 32,6 ± 4,8 años, peso de 78,4 ± 9,8 kg, porcentaje de grasa de 14,8 ± 3,8 %, índice de masa corporal de 25,7 ± 2,7 y VO2máx de 44,6 ± 6. No se encontraron cambios significativos del VO2máx con la edad, pero si con la actividad física, porcentaje de grasa e índice de masa corporal. Se sugiere que el entrenamiento de los bomberos aeronáuticos durante su jornada laboral sea de intervalos de alta intensidad y que se monitorice su nivel de actividad física y composición corporal.
Resumo:
Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the Uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Replicative life span in Saccharomyces cerevisiae is increased by glucose (G1c) limitation [ calorie restriction (CR)] and by augmented NAD(+). Increased survival promoted by CR was attributed previously to the NAD(+)-dependent histone deacetylase activity of sirtuin family protein Sir2p but not to changes in redox state. Here we show that strains defective in NAD(+) synthesis and salvage pathways (pnc1 Delta, npt1 Delta, and bna6 Delta) exhibit decreased oxygen consumption and increased mitochondrial H2O2 release, reversed over time by CR. These null mutant strains also present decreased chronological longevity in a manner rescued by CR. Furthermore, we observed that changes in mitochondrial H2O2 release alter cellular redox state, as attested by measurements of total, oxidized, and reduced glutathione. Surprisingly, our results indicate that matrix-soluble dihydrolipoyl-dehydrogenases are an important source of CR-preventable mitochondrial reactive oxygen species (ROS). Indeed, deletion of the LPD1 gene prevented oxidative stress in npt1 Delta and bna6 Delta mutants. Furthermore, pyruvate and alpha-ketoglutarate, substrates for dihydrolipoyl dehydrogenase-containing enzymes, promoted pronounced reactive oxygen release in permeabilized wild-type mitochondria. Altogether, these results substantiate the concept that mitochondrial ROS can be limited by caloric restriction and play an important role in S. cerevisiae senescence. Furthermore, these findings uncover dihydrolipoyl dehydrogenase as an important and novel source of ROS leading to life span limitation.