991 resultados para Matrix models
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.
Resumo:
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The van Genuchten expressions for the unsaturated soil hydraulic properties, first published in 1980, are used frequently in various vadose zone flow and transport applications assuming a specific relationship between the m and n soil hydraulic parameters. By comparison, probably because of the complexity of the hydraulic conductivity equations, the more general solutions with independent m and n values are rarely used. We expressed the general van Genuchten-Mualem and van Genuchten-Burdine hydraulic conductivity equations in terms of hypergeometric functions, which can be approximated by infinite series that converge rapidly for relatively large values of the van Genuchten-Mualem parameter n but only very slowly when n is close to one. Alternative equations were derived that provide very close approximations of the analytical results. The newly proposed equations allow the use of independent values of the parameters m and n in the soil water retention model of van Genuchten for subsequent prediction of the van Genuchten-Mualem and van Genuchten-Burdine hydraulic conductivity models, thus providing more flexibility in fitting experimental pressure-head-dependent water content, theta(h), and hydraulic conductivity, K(h), or K(theta) data.
Resumo:
This article analysed scenarios for Brazilian consumption of ethanol for the period 2006 to 2012. The results show that if the country`s GDP sustains a 4.6% a year growth, domestic consumption of fuel ethanol could increase to 25.16 billion liters in this period, which is a volume relatively close to the forecasted gasoline consumption of 31 billion liters. At a lower GDP growth of 1.22% a year, gasoline consumption would be reduced and domestic ethanol consumption in Brazil would be no higher than 18.32 billion liters. Contrary to the current situation, forecasts indicated that hydrated ethanol consumption could become much higher than anhydrous consumption in Brazil. The former is being consumed in cars moved exclusively by ethanol and flex-fuel cars, successfully introduced in the country at 2003. Flex cars allow Brazilian consumers to choose between gasoline and hydrated ethanol and immediately switch to whichever fuel presents the most favourable relative price.
Resumo:
Transcribed sequences have been suggested to be associated with the nuclear matrix, differing from non-transcribing sequences, which have been reported to be contained in DNA loops. However, although a dozen of genes have their expression level affected by aging, data on chromatin-nuclear matrix interactions under this physiological condition are still scarce. In the present study, liver imprints from young, adult and old mice were subjected to FISH (fluorescence in situ hybridization) for 45S rDNA and telomeric sequences, with or without a lysis treatment to produce extended chromatin fibres. There was an increased amount of 45S rDNA sequences located in DNA loops as the animals grow older, while telomeric sequences were always observed in DNA loops irrespective of the animal age. We assume that active rRNA genes associate with the nuclear matrix, while DNA loops contain silent sequences. Transcription of each 45S rDNA repeat unit is suggested to be dependent on its interaction with the nuclear matrix.
Resumo:
Causal inference methods - mainly path analysis and structural equation modeling - offer plant physiologists information about cause-and-effect relationships among plant traits. Recently, an unusual approach to causal inference through stepwise variable selection has been proposed and used in various works on plant physiology. The approach should not be considered correct from a biological point of view. Here, it is explained why stepwise variable selection should not be used for causal inference, and shown what strange conclusions can be drawn based upon the former analysis when one aims to interpret cause-and-effect relationships among plant traits.
Resumo:
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.
Resumo:
A total of 152,145 weekly test-day milk yield records from 7317 first lactations of Holstein cows distributed in 93 herds in southeastern Brazil were analyzed. Test-day milk yields were classified into 44 weekly classes of DIM. The contemporary groups were defined as herd-year-week of test-day. The model included direct additive genetic, permanent environmental and residual effects as random and fixed effects of contemporary group and age of cow at calving as covariable, linear and quadratic effects. Mean trends were modeled by a cubic regression on orthogonal polynomials of DIM. Additive genetic and permanent environmental random effects were estimated by random regression on orthogonal Legendre polynomials. Residual variances were modeled using third to seventh-order variance functions or a step function with 1, 6,13,17 and 44 variance classes. Results from Akaike`s and Schwarz`s Bayesian information criterion suggested that a model considering a 7th-order Legendre polynomial for additive effect, a 12th-order polynomial for permanent environment effect and a step function with 6 classes for residual variances, fitted best. However, a parsimonious model, with a 6th-order Legendre polynomial for additive effects and a 7th-order polynomial for permanent environmental effects, yielded very similar genetic parameter estimates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) were evaluated for the total phenolics, antioxidant capacity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. The total phenolics content ranged from 3.2 (green gooseberries) to 13.5 (black currants) mg/g fruit fresh weight. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds were quercetin derivatives (black currants and green gooseberries) and chlorogenic acid (red currants and red gooseberries). Red currants had the highest alpha-glucosidase, alpha-amylase and ACE inhibitory activities. Therefore red currants could be good dietary sources with potential antidiabetes and antihypertension functionality to compliment overall dietary management of early stages of type 2 diabetes.
Resumo:
Leaves from four different Ginkgo biloba L. trees (1 and 2 - females; 3 and 4 - males), grown at the same conditions, were collected during a period of 5 months (from June to October, 2007). Water and 12% ethanol extracts were analyzed for total phenolics content, antioxidant activity, phenolic profile, and the potential in vitro inhibitory effects on alpha-amylase, alpha-glucosidase, and Angiotensin I-Converting Enzyme (ACE) enzymes related to the management of diabetes and hypertension. The results indicated a significant difference among the trees in all functional benefits evaluated in the leaf extracts and also found important seasonal variation related to the same functional parameters. In general, the aqueous extracts had higher total phenolic content than the ethanolic extracts. Also, no correlation was found between total phenolics and antioxidant activity. In relation to the ACE inhibition, only ethanolic extracts had inhibitory activity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fruits of seven fully ripened strawberry cultivars grown in Brazil (Dover, Camp Dover, Camarosa, Sweet Charlie, Toyonoka, Oso Grande, and Piedade) were evaluated for total phenolics, antioxidant activity based on DPPH radical scavenging assay, and functionality such as inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potentially managing hyperglycemia and hypertension. The total phenolics content ranged from 966 to 1571 mu g of gallic acid/g of fruit fresh weight for Toyonoka and Dover, respectively. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds in aqueous extracts of strawberries were ellagic acid, quercetin, and chlorogenic acid. Strawberries had high alpha-glucosidase inhibitory activity. However, alpha-amylase inhibitory activity was very low in all cultivars. This suggested that strawberries could be considered as a potential dietary source with anti-hyperglycemic potential. The evaluated cultivars had no significant ACE inhibitory activity, reflecting low anti-hypertensive potential.