999 resultados para Mate plant
Resumo:
Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species-rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species-rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non-neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes.
Resumo:
Extracts of nine species of plants traditionally used in Colombia for the treatment of a variety of diseases were tested in vitro for their potential antitumor (cytotoxicity) and antiherpetic activity. MTT (Tetrazolium blue) and Neutral Red colorimetric assays were used to evaluate the reduction of viability of cell cultures in presence and absence of the extracts. MTT was also used to evaluate the effects of the extracts on the lytic activity of herpes simplex virus type 2 (HSV-2). The 50% cytotoxic concentration (CC50) and the 50% inhibitory concentration of the viral effect (EC50) for each extract were calculated by linear regression analysis. Extracts from Annona muricata, A. cherimolia and Rollinia membranacea, known for their cytotoxicity were used as positive controls. Likewise, acyclovir and heparin were used as positive controls of antiherpetic activity. Methanolic extract from Annona sp. on HEp-2 cells presented a CC50 value at 72 hr of 49.6x103mg/ml. Neither of the other extracts examined showed a significant cytotoxicity. The aqueous extract from Beta vulgaris, the ethanol extract from Callisia grasilis and the methanol extract Annona sp. showed some antiherpetic activity with acceptable therapeutic indexes (the ratio of CC50 to EC50). These species are good candidates for further activity-monitored fractionation to identify active principles.
Resumo:
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect-responsive genes after challenge with caterpillars, suggesting that egg-derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA-deficient mutant sid2-1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross-talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg-induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.
Resumo:
Abstract :The majority of land plants form the symbiosis with arbuscular mycorrhizal fungi (AMF). The AM symbiosis has existed for hundreds of millions of years but little or no specificity seems to have co- evolved between the partners and only about 200 morphospecies of AMF are known. The fungi supply the plants most notably with phosphate in exchange for carbohydrates. The fungi improve plant growth, protect them against pathogens and herbivores and the symbiosis plays a key role in ecosystem productivity and plant diversity. The fungi are coenocytic, grow clonally and no sexual stage in their life cycle is known. For these reasons, they are presumed ancient asexuals. Evidence suggests that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. Consequently, the nucleotype content of new clonal offspring could potentially be altered by segregation of nuclei at spore formation and by genetic exchange between different AMF. Given the importance of AMF, it is surprising that remarkably little is known about the genetics and genomics of the fungi.The main goal of this thesis was to investigate the combined effects of plant species differences and of genetic exchange and segregation in AMF on the symbiosis. This work showed that single spore progeny can receive a different assortment of nucleotypes compared to their parent and compared to other single spore progeny. This is the first direct evidence that segregation occurs in AMF. We then showed that both genetic exchange and segregation can lead to new progeny that differentially alter plant growth compared to their parents. We also found that genetic exchange and segregation can lead to different development of the fungus during the establishment of the symbiosis. Finally, we found that a shift of host species can differentially alter the phenotypes and genotypes of AMF progeny obtained by genetic exchange and segregation compared to their parents.Overall, this study confirms the multigenomic state of the AMF Glomus intraradices because our findings are possible only if the fungus contains genetically different nuclei. We demonstrated the importance of the processes of genetic exchange and segregation to produce, in a very short time span, new progeny with novel symbiotic effects. Moreover, our results suggest that different host species could affect the fate of different nucleotypes following genetic exchange and segregation in AMF, and can potentially contribute to the maintenance of genetic diversity within AMF individuals. This work brings new insights into understanding how plants and fungi have coevolved and how the genetic diversity in AMF can be maintained. We recommend that the intra-ir1dividual AMF diversity and these processes should be considered in future research on this symbiosis.Résumé :La majorité des plantes terrestres forment des symbioses avec les champignons endomycorhiziens arbusculaires (CEA). Cette symbiose existe depuis plusieurs centaines de millions d'années mais peu ou pas de spécificité semble avoir co-évoluée entre les partenaires et seulement 200 morpho-espèces de CEA sont connues. Le champignon fournit surtout aux plantes du phosphate en échange de carbohydrates. Le champignon augmente la croissance des plantes, les protège contre des pathogènes et herbivores et la symbiose joue un rôle clé dans la productivité des écosystèmes et de la diversité des plantes. Les CEA sont coenocytiques, se reproduisent clonalement et aucune étape sexuée n'est connue dans leur cycle de vie. Pour ces raisons, ils sont présumés comme anciens asexués. Des preuves suggèrent que les CEA ont des populations de nucleotypes différents coexistant dans un cytoplasme commun. Par conséquent, le contenu en nucleotype des nouveaux descendants clonaux pourrait être altéré par la ségrégation des noyaux lors de la fonnation des spores et par l'échange génétique entre différents CEA. Etant donné l'importance des CEA, il est surprenant que si peu soit connu sur la génétique et la génomique du champignon.Le principal but de cette thèse a été d'étudier les effets combinés de différentes espèces de plantes et des mécanismes d'échange génétique et de ségrégation chez les CEA sur la symbiose. Ce travail a montré que chaque nouvelle spore produite pouvait recevoir un assortiment différent de noyaux comparé au parent ou comparé à d'autres nouvelles spores. Ceci est la première preuve directe que la ségrégation peut se produire chez les CEA. Nous avons ensuite montré qu'à la fois l'échange génétique et la ségrégation pouvaient mener à de nouveaux descendants qui altèrent différemment la croissance des plantes, comparé à leurs parents. Nous avons également trouvé que l'échange génétique et la ségrégation pouvaient entraîner des développements différents du champignon pendant l'établissement de la symbiose. Pour finir, nous avons trouvé qu'un changement d'espèce de l'hôte pouvait altérer différemment les phénotypes et génotypes des descendants issus d'échange génétique et de ségrégation, comparé à leurs parents.Globalement, cette étude confirme l'état multigénomique du CEA Glumus intraradices car nous résultats sont possibles seulement si le champignon possède des noyaux génétiquement différents. Nous avons démontrés l'importance des mécanismes d'échange génétique et de ségrégation pour produire en très peu de temps de nouveaux descendants ayant des effets symbiotiques nouveaux. De plus, nos résultats suggèrent que différentes espèces de plantes peuvent agir sur le devenir des nucleotypes après l'échange génétique et la ségrégation chez les CEA, et pourraient contribuer à la maintenance de la diversité génétique au sein d'un même CEA. Ce travail apporte des éléments nouveaux pour comprendre comment les plantes et les champignons ont coévolué et comment la diversité génétique chez les CEA peut être maintenue. Nous recommandons de considérer la diversité génétique intra-individuelle des CEA et ces mécanismes lors de futures recherches sur cette symbiose.
Resumo:
Aquest projecte intenta implantar una metodologia de treball sobre MATE. MATE es una eina de sintonització d'aplicacions paral·leles sorgida de la tesis doctoral d'Anna Sikora a 2003. Vistos els resultats obtinguts, es va decidir donar un pas endavant i convertir-la en un producte software Open Source. Per fer-ho ha sigut necessari aplicar una serie d'estàndards i fer un proces de tests. En aquest treball s'ha creat part de la metodologia i s'han modificat dos dels mòduls principals.
Resumo:
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co-occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low-resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co-exist with males, hermaphrodites also tend to enhance their relative male allocation under low-resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co-occurring males.
Resumo:
A protozoan flagelate has recently been isolated from Amaranthus retroflexus. This plant grows near economically important crops in southeastern Spain, which are known to be parasitized by Phytomonas spp. The present study focuses on the characterization of the energy metabolism of this new isolate. These flagellates utilize glucose efficiently as their primary energy source, although they are unable to completely degrade it. They excrete ethanol, acetate, glycine, and succinate in lower amount, as well as ammonium. The presence of glycosomes was indicated by the early enzymes of the glycolytic pathway, one enzyme of the glycerol pathway (glycerol kinase), and malate dehydrogenase. No evidence of a fully functional citric-acid cycle was found. In the absence of catalase activity, these flagellates showed significant superoxide dismutase activity located in the glycosomal and cytosolic fractions. These trypanosomes, despite being morphologically and metabolically similar to other Phytomonas isolated from the same area, showed significant differences, suggesting that they are phylogenetically different species.
Resumo:
The cuticle is a physical barrier that prevents water loss and protects against irradiation, xenobiotics and pathogens. This classic textbook statement has recently been revisited and several observations were made showing that this dogma falls short of being universally true. Both transgenic Arabidopsis thaliana lines expressing cell wall-targeted fungal cutinase (so-called CUTE plants) or lipase as well as several A. thaliana mutants with altered cuticular structure remained free of symptoms after an inoculation with Botrytis cinerea. The alterations in cuticular structure lead to the release of fungitoxic substances and changes in gene expression that form a multifactorial defence response. Several models to explain this syndrome are discussed.
Resumo:
Summary For the nutritional management of bone health and the prevention of osteoporosis it is important to identify nutrients that positively influence the bone remodeling process at the cellular level. Soy isoflavones show promising osteoprotective effects in animals and humans but their mechanism of action in bone cells is yet poorly understood. Firstly, soy tissue cultures were characterized as a new and optimized source of isoflavones. A large variability in the isoflavone content was observed and high-producing strains (46.3 mg/g dry wt isoflavones) were identified. In the Ishikawa cells bioassay, the estrogenicity of isoflavones was confirmed to be 1000 to 10000 less than 17Mestradiol and that of the malonyl forms was shown for the first time (EC50 of 350 nM and 1880 nM for malonylgenistin and malonyldaidzin, respectively). The estrogenic activity of soya tissue culture extracts correlated to their isoflavone content. Secondly, the effects of phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway, as key mediators of bone formation, were investigated. Dietary achievable concentrations of genistein and daidzein (10vM), and statins (4xM) but not 17M estradiol (10nM), induced BMP-2 gene expression (by up to 3-fold) and inhibited the cholesterol biosynthetic pathway (by up to 50%) in the human osteoblastic cell line hP0B¬tert. In addition, several plant extracts (Cyperus rotundus, Lindera benzoin and Cnidium monnieri) induced BMP-2 gene expression but this induction was not restricted to the inhibition of the cholesterol synthesis pathway neither to the estrogenicity. Finally, the gene expression profiles during hP0B-tert differentiation induced by vitamin D and dexamethasone were analyzed with the Affymetrix human GeneChip. 1665 different genes and 98 ESTs were significantly regulated. The expression profiles of bone-related genes was largely in agreement with previously documented patterns, supporting the physiological relevance of the genomic results and the hP0B-tert cell line as a valid model of human osteoblast differentiation. The expression of alternative differentiation markers during the osteogenic treatment of hP0B-tert cells indicated that the adipocyte and myoblast differentiation pathways were repressed, confirming that these culture conditions allowed only osteoblast differentiation. The gene ontology analysis identified further sub-groups of genes that may be involved in the bone formation process. Aims of the thesis In order to define new strategies for the nutritional management of bone health and for the prevention of osteoporosis the major goal of the present work was to investigate the potential of phytonutrients to positively modulate the bone formation process at the cellular level and, in particular: 1.To select and optimise alternative plant sources containing high levels of isoflavones with estrogenic activity (Chapter 3). 2.To compare the effects of statins and phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway and to select new plant extracts with a bone anabolic potential (Chapter 4). 3.To further characterize the new human periosteal cell line, hP0B-tert, as a bone- formation model, by elucidating its gene expression profile during differentiation induced by vitamin D and dexamethasone (Chapter 5).
Non-nest mate discrimination and clonal colony structure in the parthenogenetic ant Cerapachys biroi
Resumo:
Understanding the interplay between cooperation and conflict in social groups is a major goal of biology. One important factor is genetic relatedness, and animal societies are usually composed of related but genetically different individuals, setting the stage for conflicts over reproductive allocation. Recently, however, it has been found that several ant species reproduce predominantly asexually. Although this can potentially give rise to clonal societies, in the few well-studied cases, colonies are often chimeric assemblies of different genotypes, due to worker drifting or colony fusion. In the ant Cerapachys biroi, queens are absent and all individuals reproduce via thelytokous parthenogenesis, making this species an ideal study system of asexual reproduction and its consequences for social dynamics. Here, we show that colonies in our study population on Okinawa, Japan, recognize and effectively discriminate against foreign workers, especially those from unrelated asexual lineages. In accord with this finding, colonies never contained more than a single asexual lineage and average pairwise genetic relatedness within colonies was extremely high (r = 0.99). This implies that the scope for social conflict in C. biroi is limited, with unusually high potential for cooperation and altruism.
Resumo:
Polygonum punctatum (Polygonaceae) is an herb known in some regions of Brazil as "erva-de-bicho" and is used to treat intestinal disorders. The dichloromethane extract of the aerial parts of this plant showed strong activity in a bioautographic assay with the fungus Cladosporium sphaerospermum. The bioassay-guided chemical fractionation of this extract afforded the sesquiterpene dialdehyde polygodial as the active constituent. The presence of this compound with antibiotic, anti-inflammatory and anti-hyperalgesic properties in "erva-de-bicho" may account for the effects attributed by folk medicine to this plant species.
Resumo:
MATE (Monitoring, Analysis and Tuning Environment) es un proyecto que surge en 2004 como tesis doctoral de Anna Sikora con el propósito de investigar la mejora de rendimiento de aplicaciones paralelas a través de la modificación dinámica. Nuestro proyecto supone un paso adelante en cuestiones de calidad de software y pretende dotar al proyecto MATE de una base de desarrollo sólida de cara a futuras lineas de trabajo. Para ello se hace frente a la problemática desde tres perspectivas: la creación de una metodología de desarrollo (y su aplicación sobre el proyecto existente), la implantación de un entorno de desarrollo de soporte y el desarrollo de nuevas características para favorecer la portabilidad y la usabilidad, entre otros aspectos.
Resumo:
There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillar's spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillar's survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.