902 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood
Resumo:
Birnbaum-Saunders models have largely been applied in material fatigue studies and reliability analyses to relate the total time until failure with some type of cumulative damage. In many problems related to the medical field, such as chronic cardiac diseases and different types of cancer, a cumulative damage caused by several risk factors might cause some degradation that leads to a fatigue process. In these cases, BS models can be suitable for describing the propagation lifetime. However, since the cumulative damage is assumed to be normally distributed in the BS distribution, the parameter estimates from this model can be sensitive to outlying observations. In order to attenuate this influence, we present in this paper BS models, in which a Student-t distribution is assumed to explain the cumulative damage. In particular, we show that the maximum likelihood estimates of the Student-t log-BS models attribute smaller weights to outlying observations, which produce robust parameter estimates. Also, some inferential results are presented. In addition, based on local influence and deviance component and martingale-type residuals, a diagnostics analysis is derived. Finally, a motivating example from the medical field is analyzed using log-BS regression models. Since the parameter estimates appear to be very sensitive to outlying and influential observations, the Student-t log-BS regression model should attenuate such influences. The model checking methodologies developed in this paper are used to compare the fitted models.
Resumo:
We analyze data obtained from a study designed to evaluate training effects on the performance of certain motor activities of Parkinson`s disease patients. Maximum likelihood methods were used to fit beta-binomial/Poisson regression models tailored to evaluate the effects of training on the numbers of attempted and successful specified manual movements in 1 min periods, controlling for disease stage and use of the preferred hand. We extend models previously considered by other authors in univariate settings to account for the repeated measures nature of the data. The results suggest that the expected number of attempts and successes increase with training, except for patients with advanced stages of the disease using the non-preferred hand. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
In this paper we introduce the Weibull power series (WPS) class of distributions which is obtained by compounding Weibull and power series distributions where the compounding procedure follows same way that was previously carried out by Adamidis and Loukas (1998) This new class of distributions has as a particular case the two-parameter exponential power series (EPS) class of distributions (Chahkandi and Gawk 2009) which contains several lifetime models such as exponential geometric (Adamidis and Loukas 1998) exponential Poisson (Kus 2007) and exponential logarithmic (Tahmasbi and Rezaei 2008) distributions The hazard function of our class can be increasing decreasing and upside down bathtub shaped among others while the hazard function of an EPS distribution is only decreasing We obtain several properties of the WPS distributions such as moments order statistics estimation by maximum likelihood and inference for a large sample Furthermore the EM algorithm is also used to determine the maximum likelihood estimates of the parameters and we discuss maximum entropy characterizations under suitable constraints Special distributions are studied in some detail Applications to two real data sets are given to show the flexibility and potentiality of the new class of distributions (C) 2010 Elsevier B V All rights reserved
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We derive a simple matrix formula for second-order covariances of maximum-likelihood estimators in this class of models. The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors. Some simulation results show that the second-order covariances can be quite pronounced in small to moderate sample sizes. We also present empirical applications.
Resumo:
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
Resumo:
In this paper we discuss bias-corrected estimators for the regression and the dispersion parameters in an extended class of dispersion models (Jorgensen, 1997b). This class extends the regular dispersion models by letting the dispersion parameter vary throughout the observations, and contains the dispersion models as particular case. General formulae for the O(n(-1)) bias are obtained explicitly in dispersion models with dispersion covariates, which generalize previous results obtained by Botter and Cordeiro (1998), Cordeiro and McCullagh (1991), Cordeiro and Vasconcellos (1999), and Paula (1992). The practical use of the formulae is that we can derive closed-form expressions for the O(n(-1)) biases of the maximum likelihood estimators of the regression and dispersion parameters when the information matrix has a closed-form. Various expressions for the O(n(-1)) biases are given for special models. The formulae have advantages for numerical purposes because they require only a supplementary weighted linear regression. We also compare these bias-corrected estimators with two different estimators which are also bias-free to order O(n(-1)) that are based on bootstrap methods. These estimators are compared by simulation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main purpose of this work is to study the behaviour of Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-32] adjusted likelihood ratio statistic in testing simple hypothesis in a new class of regression models proposed here. The proposed class of regression models considers Dirichlet distributed observations, and the parameters that index the Dirichlet distributions are related to covariates and unknown regression coefficients. This class is useful for modelling data consisting of multivariate positive observations summing to one and generalizes the beta regression model described in Vasconcellos and Cribari-Neto [Vasconcellos, K.L.P., Cribari-Neto, F., 2005. Improved maximum likelihood estimation in a new class of beta regression models. Brazilian journal of Probability and Statistics 19,13-31]. We show that, for our model, Skovgaard`s adjusted likelihood ratio statistics have a simple compact form that can be easily implemented in standard statistical software. The adjusted statistic is approximately chi-squared distributed with a high degree of accuracy. Some numerical simulations show that the modified test is more reliable in finite samples than the usual likelihood ratio procedure. An empirical application is also presented and discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We introduce, for the first time, a new class of Birnbaum-Saunders nonlinear regression models potentially useful in lifetime data analysis. The class generalizes the regression model described by Rieck and Nedelman [Rieck, J.R., Nedelman, J.R., 1991. A log-linear model for the Birnbaum-Saunders distribution. Technometrics 33, 51-60]. We discuss maximum-likelihood estimation for the parameters of the model, and derive closed-form expressions for the second-order biases of these estimates. Our formulae are easily computed as ordinary linear regressions and are then used to define bias corrected maximum-likelihood estimates. Some simulation results show that the bias correction scheme yields nearly unbiased estimates without increasing the mean squared errors. Two empirical applications are analysed and discussed. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
The goal of this paper is to show the possibility of a non-monotone relation between coverage ans risk which has been considered in the literature of insurance models since the work of Rothschild and Stiglitz (1976). We present an insurance model where the insured agents have heterogeneity in risk aversion and in lenience (a prevention cost parameter). Risk aversion is described by a continuous parameter which is correlated with lenience and for the sake of simplicity, we assume perfect correlation. In the case of positive correlation, the more risk averse agent has higher cosr of prevention leading to a higher demand for coverage. Equivalently, the single crossing property (SCP) is valid and iplies a positive correlation between overage and risk in equilibrium. On the other hand, if the correlation between risk aversion and lenience is negative, not only may the SCP be broken, but also the monotonocity of contracts, i.e., the prediction that high (low) risk averse types choose full (partial) insurance. In both cases riskiness is monotonic in risk aversion, but in the last case there are some coverage levels associated with two different risks (low and high), which implies that the ex-ante (with respect to the risk aversion distribution) correlation between coverage and riskiness may have every sign (even though the ex-post correlation is always positive). Moreover, using another instrument (a proxy for riskiness), we give a testable implication to desentangle single crossing ans non single croosing under an ex-post zero correlation result: the monotonicity of coverage as a function os riskiness. Since by controlling for risk aversion (no asymmetric information), coverage is monotone function of riskiness, this also fives a test for asymmetric information. Finally, we relate this theoretical results to empirical tests in the recent literature, specially the Dionne, Gouruéroux and Vanasse (2001) work. In particular, they found an empirical evidence that seems to be compatible with asymmetric information and non single crossing in our framework. More generally, we build a hidden information model showing how omitted variables (asymmetric information) can bias the sign of the correlation of equilibrium variables conditioning on all observable variables. We show that this may be the case when the omitted variables have a non-monotonic relation with the observable ones. Moreover, because this non-dimensional does not capture this deature. Hence, our main results is to point out the importance of the SPC in testing predictions of the hidden information models.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
Neste trabalho investigamos as propriedades em pequena amostra e a robustez das estimativas dos parâmetros de modelos DSGE. Tomamos o modelo de Smets and Wouters (2007) como base e avaliamos a performance de dois procedimentos de estimação: Método dos Momentos Simulados (MMS) e Máxima Verossimilhança (MV). Examinamos a distribuição empírica das estimativas dos parâmetros e sua implicação para as análises de impulso-resposta e decomposição de variância nos casos de especificação correta e má especificação. Nossos resultados apontam para um desempenho ruim de MMS e alguns padrões de viés nas análises de impulso-resposta e decomposição de variância com estimativas de MV nos casos de má especificação considerados.
Resumo:
The goal of t.his paper is to show the possibility of a non-monot.one relation between coverage and risk which has been considered in the literature of insurance models since the work of Rothschild and Stiglitz (1976). We present an insurance model where the insured agents have heterogeneity in risk aversion and in lenience (a prevention cost parameter). Risk aversion is described by a continuou.'l parameter which is correlated with lenience and, for the sake of simplicity, we assume perfect correlation. In the case of positive correlation, the more risk averse agent has higher cost of prevention leading to a higher demand for coverage. Equivalently, the single crossing property (SCP) is valid and implies a positive correlation between coverage and risk in equilibrium. On the other hand, if the correlation between risk aversion and lenience is negative, not only may the sep be broken, but also the monotonicity of contracts, i.e., the prediction that high (Iow) risk averse types choose full (partial) insurance. In both cases riskiness is monotonic in risk aversion, but in the last case t,here are some coverage leveIs associated with two different risks (low and high), which implies that the ex-ante (with respect to the risk aversion distribution) correlation bet,ween coverage and riskiness may have every sign (even though the ex-post correlation is always positive). Moreover, using another instrument (a proxy for riskiness), we give a testable implication to disentangle single crossing and non single crossing under an ex-post zero correlation result: the monotonicity of coverage as a function of riskiness. Since by controlling for risk aversion (no asymmetric informat, ion), coverage is a monotone function of riskiness, this also gives a test for asymmetric information. Finally, we relate this theoretical results to empirica! tests in the recent literature, specially the Dionne, Gouriéroux and Vanasse (2001) work. In particular, they found an empirical evidence that seems to be compatible with asymmetric information and non single crossing in our framework. More generally, we build a hidden information model showing how omitted variabIes (asymmetric information) can bias the sign of the correlation of equilibrium variabIes conditioning on ali observabIe variabIes. We show that this may be t,he case when the omitted variabIes have a non-monotonic reIation with t,he observable ones. Moreover, because this non-monotonic reIat,ion is deepIy reIated with the failure of the SCP in one-dimensional screening problems, the existing lit.erature on asymmetric information does not capture t,his feature. Hence, our main result is to point Out the importance of t,he SCP in testing predictions of the hidden information models.
Resumo:
This paper uses an output oriented Data Envelopment Analysis (DEA) measure of technical efficiency to assess the technical efficiencies of the Brazilian banking system. Four approaches to estimation are compared in order to assess the significance of factors affecting inefficiency. These are nonparametric Analysis of Covariance, maximum likelihood using a family of exponential distributions, maximum likelihood using a family of truncated normal distributions, and the normal Tobit model. The sole focus of the paper is on a combined measure of output and the data analyzed refers to the year 2001. The factors of interest in the analysis and likely to affect efficiency are bank nature (multiple and commercial), bank type (credit, business, bursary and retail), bank size (large, medium, small and micro), bank control (private and public), bank origin (domestic and foreign), and non-performing loans. The latter is a measure of bank risk. All quantitative variables, including non-performing loans, are measured on a per employee basis. The best fits to the data are provided by the exponential family and the nonparametric Analysis of Covariance. The significance of a factor however varies according to the model fit although it can be said that there is some agreements between the best models. A highly significant association in all models fitted is observed only for nonperforming loans. The nonparametric Analysis of Covariance is more consistent with the inefficiency median responses observed for the qualitative factors. The findings of the analysis reinforce the significant association of the level of bank inefficiency, measured by DEA residuals, with the risk of bank failure.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)