943 resultados para Markov Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problems encountered when using traditional rectangular pulse hierarchical point processmodels for fine temporal resolution and the growing number of available tip-time records suggest that rainfall increments from tipping-bucket gauges be modelled directly. Poisson processes are used with an arrival rate modulated by a Markov chain in Continuous time. The paper shows how, by using two or three states for this chain, much of the structure of the rainfall intensity distribution and the wet/dry sequences can be represented for time-scales as small as 5 minutes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models. We generalize an earlier work, considering the sojourn times in health states are not identically distributed, for a given vector of covariates. Approaches based on semiparametric and parametric (exponential and Weibull distributions) methodologies are considered. A simulation study is conducted to evaluate the performance of the proposed estimator and the jackknife resampling method is used to estimate the variance of such estimator. An application to a real data set is also included.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we consider daily financial data from various sources (stock market indices, foreign exchange rates and bonds) and analyze their multiscaling properties by estimating the parameters of a Markov-switching multifractal (MSM) model with Lognormal volatility components. In order to see how well estimated models capture the temporal dependency of the empirical data, we estimate and compare (generalized) Hurst exponents for both empirical data and simulated MSM models. In general, the Lognormal MSM models generate "apparent" long memory in good agreement with empirical scaling provided that one uses sufficiently many volatility components. In comparison with a Binomial MSM specification [11], results are almost identical. This suggests that a parsimonious discrete specification is flexible enough and the gain from adopting the continuous Lognormal distribution is very limited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we consider daily financial data of a collection of different stock market indices, exchange rates, and interest rates, and we analyze their multi-scaling properties by estimating a simple specification of the Markov-switching multifractal (MSM) model. In order to see how well the estimated model captures the temporal dependence of the data, we estimate and compare the scaling exponents H(q) (for q=1,2) for both empirical data and simulated data of the MSM model. In most cases the multifractal model appears to generate ‘apparent’ long memory in agreement with the empirical scaling laws.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work presented in this paper focuses on fitting of a neural mass model to EEG data. Neurophysiology inspired mathematical models were developed for simulating brain's electrical activity imaged through Electroencephalography (EEG) more than three decades ago. At the present well informative models which even describe the functional integration of cortical regions also exists. However, a very limited amount of work is reported in literature on the subject of model fitting to actual EEG data. Here, we present a Bayesian approach for parameter estimation of the EEG model via a marginalized Markov Chain Monte Carlo (MCMC) approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smartphone applications are getting more and more popular and pervasive in our daily life, and are also attractive to malware writers due to their limited computing source and vulnerabilities. At the same time, we possess limited understanding of our opponents in cyberspace. In this paper, we investigate the propagation model of SMS/MMS-based worms through integrating semi-Markov process and social relationship graph. In our modeling, we use semi-Markov process to characterize state transition among mobile nodes, and hire social network theory, a missing element in many previous works, to enhance the proposed mobile malware propagation model. In order to evaluate the proposed models, we have developed a specific software, and collected a large scale real-world data for this purpose. The extensive experiments indicate that the proposed models and algorithms are effective and practical. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates economic growth’s pattern of variation across and within countries using a Time-Varying Transition Matrix Markov-Switching Approach. The model developed follows the approach of Pritchett (2003) and explains the dynamics of growth based on a collection of different states, each of which has a sub-model and a growth pattern, by which countries oscillate over time. The transition matrix among the different states varies over time, depending on the conditioning variables of each country, with a linear dynamic for each state. We develop a generalization of the Diebold’s EM Algorithm and estimate an example model in a panel with a transition matrix conditioned on the quality of the institutions and the level of investment. We found three states of growth: stable growth, miraculous growth, and stagnation. The results show that the quality of the institutions is an important determinant of long-term growth, whereas the level of investment has varying roles in that it contributes positively in countries with high-quality institutions but is of little relevance in countries with medium- or poor-quality institutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decades, the analysis of the transmissions of international nancial events has become the subject of many academic studies focused on multivariate volatility models volatility. The goal of this study is to evaluate the nancial contagion between stock market returns. The econometric approach employed was originally presented by Pelletier (2006), named Regime Switching Dynamic Correlation (RSDC). This methodology involves the combination of Constant Conditional Correlation Model (CCC) proposed by Bollerslev (1990) with Markov Regime Switching Model suggested by Hamilton and Susmel (1994). A modi cation was made in the original RSDC model, the introduction of the GJR-GARCH model formulated in Glosten, Jagannathan e Runkle (1993), on the equation of the conditional univariate variances to allow asymmetric e ects in volatility be captured. The database was built with the series of daily closing stock market indices in the United States (SP500), United Kingdom (FTSE100), Brazil (IBOVESPA) and South Korea (KOSPI) for the period from 02/01/2003 to 09/20/2012. Throughout the work the methodology was compared with others most widespread in the literature, and the model RSDC with two regimes was de ned as the most appropriate for the selected sample. The set of results provide evidence for the existence of nancial contagion between markets of the four countries considering the de nition of nancial contagion from the World Bank called very restrictive. Such a conclusion should be evaluated carefully considering the wide diversity of de nitions of contagion in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).