859 resultados para Manufacturing processes.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Queueing systems constitute a central tool in modeling and performance analysis. These types of systems are in our everyday life activities, and the theory of queueing systems was developed to provide models for forecasting behaviors of systems subject to random demand. The practical and useful applications of the discrete-time queues make the researchers to con- tinue making an e ort in analyzing this type of models. Thus the present contribution relates to a discrete-time Geo/G/1 queue in which some messages may need a second service time in addition to the rst essential service. In day-to-day life, there are numerous examples of queueing situations in general, for example, in manufacturing processes, telecommunication, home automation, etc, but in this paper a particular application is the use of video surveil- lance with intrusion recognition where all the arriving messages require the main service and only some may require the subsidiary service provided by the server with di erent types of strategies. We carry out a thorough study of the model, deriving analytical results for the stationary distribution. The generating functions of the number of messages in the queue and in the system are obtained. The generating functions of the busy period as well as the sojourn times of a message in the server, the queue and the system are also provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry’s standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device. This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the presented thesis work, meshfree method with distance fields is applied to create a novel computational approach which enables inclusion of the realistic geometric models of the microstructure and liberates Finite Element Analysis(FEA) from thedependance on and limitations of meshing of fine microstructural feature such as splats and porosity.Manufacturing processes of ceramics produce materials with complex porosity microstructure.Geometry of pores, their size and location substantially affect macro scale physical properties of the material. Complex structure and geometry of the pores severely limit application of modern Finite Element Analysis methods because they require construction of spatial grids (meshes) that conform to the geometric shape of the structure. As a result, there are virtually no effective tools available for predicting overall mechanical and thermal properties of porous materials based on their microstructure. This thesis is a separate handling and controls of geometric and physical computational models that are seamlessly combined at solution run time. Using the proposedapproach we will determine the effective thermal conductivity tensor of real porous ceramic materials featuring both isotropic and anisotropic thermal properties. This work involved development and implementation of numerical algorithms, data structure, and software.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Markets are increasingly competitive and the companies feel the urge to improve their manufacturing processes. Blending that with a larger control of quality and safety it was created a need to develop new methods of analysis each time more accurate, faster and with lower costs. Alentejo is a region with a wide variety of soils, most of them are rich in calcium and potassium. In the production of sparkling wine many wineries use encapsulated yeast in alginate beads, instead of the traditional method, champenoise. The first method is faster, allowing a more versatile production, reducing the risk of contamination and features organoleptic characteristics similar to the traditional method (yeast free). However, encapsulated yeast spheres should be only used if the base wine matches a number of features, among them calcium content. In this study the calcium content in the wine was determined by atomic absorption spectroscopy (AAS) and by near-infrared spectroscopy. The AAS is a high sensitivity method clearly produces a reliable result, however it is very time consuming and produces great quantities of environmental waste, therefore the possibility of using near-infrared spectroscopy as a method was studied to be a fast, simple and clean alternative to the AAS. It was obtained a calibration model with a variation coefficient higher than 0.80 which indicates that the near-infrared spectroscopy as an adequately alternative the ASS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Manufacturing organisations spend more on Business Process Improvement initiatives to make them more competitive in growing global market. This paper presents a Rapid Improvement Workshop (RIW) framework which companies can used to identify the critical factors regulating the diffusion of business process improvement in their company. The framework can then be used address how process improvement can be efficiently implemented. We use the results from case studies at Caterpillar India. The paper identifies the critical factors that contribute to the successful implementation of process improvement programs in manufacturing organisations. We further identify certain technological and cultural barriers to the implementation of process improvement programs and how Indian manufacturing companies can overcome these barriers to attain competitive advantage in the global markets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abrasion by hard particles is responsible for wear in many practical situations, but can also be used constructively in grinding and polishing processes. A brief overview of abrasion is presented, followed by an historical survey of polishing and a discussion of laboratory abrasion test methods.