968 resultados para Mannose-Binding Lectin -- blood


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hematophagous insects digest large amounts of host hemoglobin and release heme inside their guts. In Rhodnius prolixus, hemoglobin-derived heme is detoxified by biomineralization, forming hemozoin (Hz). Recently, the involvement of the R. prolixus perimicrovillar membranes in Hz formation was demonstrated. Methodology/Principal Findings: Hz formation activity of an α-glucosidase was investigated. Hz formation was inhibited by specific α-glucosidase inhibitors. Moreover, Hz formation was sensitive to inhibition by Diethypyrocarbonate, suggesting a critical role of histidine residues in enzyme activity. Additionally, a polyclonal antibody raised against a phytophagous insect α-glucosidase was able to inhibit Hz formation. The α-glucosidase inhibitors have had no effects when used 10 h after the start of reaction, suggesting that α-glucosidase should act in the nucleation step of Hz formation. Hz formation was seen to be dependent on the substrate-binding site of enzyme, in a way that maltose, an enzyme substrate, blocks such activity. dsRNA, constructed using the sequence of α-glucosidase gene, was injected into R. prolixus females' hemocoel. Gene silencing was accomplished by reduction of both α-glucosidase and Hz formation activities. Insects were fed on plasma or hemin-enriched plasma and gene expression and activity of α-glucosidase were higher in the plasma plus hemin-fed insects. The deduced amino acid sequence of α-glucosidase shows a high similarity to the insect α-glucosidases, with critical histidine and aspartic residues conserved among the enzymes. Conclusions/Significance: Herein the Hz formation is shown to be associated to an a-glucosidase, the biochemical marker from Hemipteran perimicrovillar membranes. Usually, these enzymes catalyze the hydrolysis of glycosidic bond. The results strongly suggest that α-glucosidase is responsible for Hz nucleation in the R. prolixus midgut, indicating that the plasticity of this enzyme may play an important role in conferring fitness to hemipteran hematophagy, for instance. © 2009 Mury et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High Throughput Sequencing capabilities have made the process of assembling a transcriptome easier, whether or not there is a reference genome. But the quality of a transcriptome assembly must be good enough to capture the most comprehensive catalog of transcripts and their variations, and to carry out further experiments on transcriptomics. There is currently no consensus on which of the many sequencing technologies and assembly tools are the most effective. Many non-model organisms lack a reference genome to guide the transcriptome assembly. One question, therefore, is whether or not a reference-based genome assembly gives better results than de novo assembly. The blood-sucking insect Rhodnius prolixus-a vector for Chagas disease-has a reference genome. It is therefore a good model on which to compare reference-based and de novo transcriptome assemblies. In this study, we compared de novo and reference-based genome assembly strategies using three datasets (454, Illumina, 454 combined with Illumina) and various assembly software. We developed criteria to compare the resulting assemblies: the size distribution and number of transcripts, the proportion of potentially chimeric transcripts, how complete the assembly was (completeness evaluated both through CEGMA software and R. prolixus proteome fraction retrieved). Moreover, we looked for the presence of two chemosensory gene families (Odorant-Binding Proteins and Chemosensory Proteins) to validate the assembly quality. The reference-based assemblies after genome annotation were clearly better than those generated using de novo strategies alone. Reference-based strategies revealed new transcripts, including new isoforms unpredicted by automatic genome annotation. However, a combination of both de novo and reference-based strategies gave the best result, and allowed us to assemble fragmented transcripts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To investigate risk factors associated with the acquisition of antibodies against Plasmodium vivax Duffy binding protein (PvDBP) a leading malaria vaccine candidate in a well-consolidated agricultural settlement of the Brazilian Amazon Region and to determine the sequence diversity of the PvDBP ligand domain (DBPII) within the local malaria parasite population. Methods Demographic, epidemiological and clinical data were collected from 541 volunteers using a structured questionnaire. Malaria parasites were detected by conventional microscopy and PCR, and blood collection was used for antibody assays and molecular characterisation of DBPII. Results The frequency of malaria infection was 7% (6% for P. vivax and 1% for P. falciparum), with malaria cases clustered near mosquito breeding sites. Nearly 50% of settlers had anti-PvDBP IgG antibodies, as detected by enzyme-linked immunosorbent assay (ELISA) with subjects age being the only strong predictor of seropositivity to PvDBP. Unexpectedly, low levels of DBPII diversity were found within the local malaria parasites, suggesting the existence of low gene flow between P. vivax populations, probably due to the relative isolation of the studied settlement. Conclusion The recognition of PvDBP by a significant proportion of the community, associated with low levels of DBPII diversity among local P. vivax, reinforces the variety of malaria transmission patterns in communities from frontier settlements. Such studies should provide baseline information for antimalarial vaccines now in development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44: 1003-1012, 2012. First published September 4, 2012; doi: 10.1152/physiolgenomics.00058.2012.-Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M-ficolin specificity for sialylated ligands prompted us to investigate its interactions with the main membrane sialoprotein of human neutrophils, CD43. rM-ficolin bound CD43 and prevented the access of anti-CD43 mAb. Moreover, rM-ficolin reacted exclusively with CD43 on Western blots of neutrophil lysate. We confirmed that M-ficolin is secreted by fMLP-activated neutrophils, and this endogenous M-ficolin also binds to CD43 and competes with anti-CD43 mAb. Anti-CD43 antibody cross-linking or fMLP resulted in M-ficolin and CD43 colocalization on polarized neutrophils. The binding of rM-ficolin to resting neutrophils induced cell polarization, adhesion, and homotypic aggregation as anti-CD43 mAb. The M-ficolin Y271F mutant, unable to bind sialic acid, neither reacted with neutrophils nor modulated their functions. Finally, rM-ficolin activated the lectin complement pathway on neutrophils. These results emphasize a new function of M-ficolin, different from ficolin pathogen recognition, i.e., a participation to neutrophil adhesion potentially important in early inflammation, as nanomolar agonist concentrations are sufficient to mobilize M-ficolin to the neutrophil surface. This multivalent lectin could then endow the antiadhesive CD43, essentially designed to prevent leukocyte aggregation in the blood flow, with new adhesive properties and explain, at least in part, dual-adhesive/antiadhesive roles of CD43 in neutrophil recruitment. J. Leukoc. Biol. 91: 469-474; 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that BJcuL, a lectin purified from Bothrops jararacussu venom, exerts cytotoxic effects to gastric carcinoma cells MKN45 and AGS. This effect was due to the direct interaction with specific glycans on the cells surface and was observed by cell viability decrease, disorganization of actin filaments and apoptosis. In addition, BJcuL was able to reduce tumor cell adhesion to matrigel, what was inhibited by specific carbohydrate or partially inhibited when cells were pre-incubated with matrigel. Our results suggest that BJcuL was able to promote apoptosis in both tumor cells lines and therefore has a prospect for potential use in cancer therapy. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

REST is a zinc-finger transcription factor implicated in several processes such as maintenance of embryonic stem cell pluripotency and regulation of mitotic fidelity in non-neuronal cells [Chong et al., 1995]. The gene encodes for a 116-kDa protein that acts as a molecular platform for co-repressors recruitment and promotes modifications of DNA and histones [Ballas, 2005]. REST showed different apparent molecular weights, consistent with the possible presence of post-translational modifications [Lee et al., 2000]. Among these the most common is glycosylation, the covalent attachment of carbohydrates during or after protein synthesis [Apweiler et al., 1999] My thesis has ascertained, for the first time, the presence of glycan chians in the transcription factor REST. Through enzymatic deglycosylation and MS, oligosaccharide composition of glycan chains was evaluated: a complex mixture of glycans, composed of N-acetylgalactosamine, galactose and mannose, was observed thus confirming the presence of O- and N-linked glycan chains. Glycosylation site mapping was done using a 18O-labeling method and MS/MS and twelve potential N-glycosylation sites were identified. The most probable glycosylation target residues were mutated through site-directed mutagenesis and REST mutants were expressed in different cell lines. Variations in the protein molecular weight and mutant REST ability to bind the RE-1 sequence were analyzed. Gene reporter assays showed that, altogether, removal of N-linked glycan chains causes loss of transcriptional repressor function, except for mutant N59 which showed a slight residual repressor activity in presence of IGF-I. Taken togheter these results demonstrate the presence of complex glycan chians in the transcription factor REST: I have depicted their composition, started defining their position on the protein backbone and identified their possible role in the transcription factor functioning. Considering the crucial role of glycosylation and transcription factors activity in the aetiology of many diseases, any further knowledge could find important and interesting pharmacological application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neisseria meningitidis (Nm) is the major cause of septicemia and meningococcal meningitis. During the course of infection, it must adapt to different host environments as a crucial factor for survival. Despite the severity of meningococcal sepsis, little is known about how Nm adapts to permit survival and growth in human blood. A previous time-course transcriptome analysis, using an ex vivo model of human whole blood infection, showed that Nm alters the expression of nearly 30% of ORFs of the genome: major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. Starting from these data, mutagenesis studies of a subset of up-regulated genes were performed and the mutants were tested for the ability to survive in human whole blood; Nm mutant strains lacking the genes encoding NMB1483, NalP, Mip, NspA, Fur, TbpB, and LctP were sensitive to killing by human blood. Then, the analysis was extended to the whole Nm transcriptome in human blood, using a customized 60-mer oligonucleotide tiling microarray. The application of specifically developed software combined with this new tiling array allowed the identification of different types of regulated transcripts: small intergenic RNAs, antisense RNAs, 5’ and 3’ untranslated regions and operons. The expression of these RNA molecules was confirmed by 5’-3’RACE protocol and specific RT-PCR. Here we describe the complete transcriptome of Nm during incubation in human blood; we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. In addition the tiling array analysis demonstrated that Nm expresses a set of new transcripts, not previously identified, and suggests the presence of a circuit of regulatory RNA elements used by Nm to adapt to proliferate in human blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation describes the synthesis of surface attached hydrogel biomaterials, characterization of their properties, evaluation of structuring concepts and the investigation of these materials in the isolation of DNA from human whole blood. Photosensitive hydrogel precursor materials on the basis of hydroxyethylmethacrylate (HEMA) were synthesized by free radical polymerization. In order to obtain surface bound hydrogel films, the precursors were deposited on a suitable substrate and subsequently irradatiated with UV - light to accomplish the formation of crosslinks in the film and create surface attachment. The composition of the polymerization precursor materials was determined by comprehensive NMR and GPC studies, revealing the copolymerizationrnbehaviour of the used monomers - HEMA derivatives and the photocrosslinkerrnMABP - and their respective distribution in the hydrogel precursors. The degree of crosslinking of the hydrogels was characterized with UV/vis spectroscopy. Stress-strain measurements were conducted in order to investigate the mechanical properties of the biomaterials. Moreover, the swelling process and biomolecule adsorption properties of the hydrogels were investigated with SPR/OW spectroscopy. For this, the deposition and binding of the hydrogels on gold or SiO2 surfaces was facilitated with photocrosslinkable adhesion promotors. The produced hydrogels were mechanically rigid and stablernunder the conditions of PCR and blood lysis. Furthermore, strategies towards the increase of hydrogel surface structure and porosity with porosigens, 2D laser interference lithography and photocleavable blockcopolymers were investigated. At last, a combinatorial strategy was used for the determination of the usefulness of hydrogels for the isolation from DNA from blood. A series of functionalized hydrogel precursors were synthesized, transferred to the surface inside a PCR tube and subsequently screened in regard to DNA adsorption properties with Taqman quantitative PCR. This approach yielded a promising candidate for a functional PCR tube coating that would allow the entire DNA isolation procedure being carried out in a single reaction container.rnThereforce, the practical application of such macromolecular architectures can be envisioned to improve industrial DNA diagnostic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CCAAT/enhancer binding protein-α (CEBPA) mutations in acute myeloid leukemia (AML) patients with a normal karyotype (NK) confer favorable prognosis, whereas NK-AML patients per se are of intermediate risk. This suggests that blocked CEBPA function characterizes NK-AML with favorable outcome. We determined the prognostic significance of CEBPA DNA binding function by enzyme-linked immunosorbent assay in 105 NK-AML patients. Suppressed CEBPA DNA binding was defined by 21 good-risk AML patients with inv(16) or t(8;21) (both abnormalities targeting CEBPA) and 8 NK-AML patients with dominant-negative CEBPA mutations. NK-AML patients with suppressed CEBPA function showed a better overall survival (P = .0231) and disease-free survival (P = .0069) than patients with conserved CEBPA function. Suppressed CEBPA DNA binding was an independent marker for better overall survival and disease-free survival in a multivariable analysis that included FLT3-ITD, NPM1 and CEBPA mutation status, white blood cell count, age and lactate dehydrogenase. These data indicate that suppressed CEBPA function is associated with favorable prognosis in NK-AML patients.