980 resultados para Manganês peroxidase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artocarpin, a mannose-specific lectin, is a homotetrameric protein (M(r) 65,000) devoid of covalently attached carbohydrates and consists of four isolectins with pI in the range 5-6.5. Investigations of its carbohydrate binding specificity reveal that among monosaccharides, mannose is preferred over glucose. Among mannooligosaccharides, mannotriose (Man alpha 1-3[Man alpha 1-6]Man) and mannopentaose are the strongest ligands followed by Man alpha 1-3Man. Extension of these ligands by GlcNAc at the reducing ends of mannooligosaccharides tested remarkably improves their inhibitory potencies, while substitution of both the alpha 1-3 and alpha 1-6 mannosyl residues of mannotriose and the core pentasaccharide of N-linked glycans (Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc) by GlcNAc or N-acetyllactosamine in beta 1-2 linkage diminishes their inhibitory potencies. Sialylated oligosaccharides are non-inhibitory. Moreover, the substitution of either alpha 1-3 or alpha 1-6 linked mannosyl residues of M5Gn or both by mannose in alpha 1-2 linkage leads to a considerable reduction of their inhibitory power. Addition of a xylose residue in beta 1-2 linkage to the core pentasaccharide improves the inhibitory activity. Considering the fact that artocarpin has the strongest affinity for the xylose containing hepasaccharide from horseradish peroxidase, which differs significantly from all the mannose/glucose-specific lectins, it should prove a useful tool for the isolation and characterization of glycoproteins displaying such structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10−4 Image . The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibodies raised against deoxyadenylate and deoxycytidylate were found to react with double stranded DNA as assessed by highly sensitive avidin-biotin microELISA. The binding was specific as it was completely inhibited by the homologous hapten. The antibodies did not react with tRNA and rRNA. These antibodies were also shown to react with supercoiled and relaxed forms of pBR322 DNA as demonstrated by gel retardation assay. ssDNA, single-stranded DNA; dsDNA, double-stranded DNA; CT DNA, calf thymus DNA; AB microELISA, avidin-biotin microELISA; dpA, deoxyadenylate; dpC, deoxycytidylate; avidin-HRP, avidin-horseradish peroxidase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

H2O2, in addition to producing highly reactive molecules through hydroxyl radicals or peroxidase action, can exert a number of direct effects on cells, organelles and enzymes. The stimulations include glucose transport, glucose incorporation into glycogen, HMP shunt pathway, lipid synthesis, release of calcium from mitochondria and of arachidonate from phospholipids, poly ADP ribosylation, and insulin receptor tyrosine kinase and pyruvate dehydrogenase activities. The inactivations include glycolysis, lipolysis, reacylation of lysophospholipids, ATP synthesis, superoxide dismutase and protein kinase C. Damages to DNA and proteoglycan and general cytotoxicity possibly through oxygen radicals were also observed. A whole new range of effects will be opened by the finding that H2O2 can act as a signal transducer in oxidative stress by oxidizing a dithiol protein to disulphide form which then activates transcription of the stress inducible genes. Many of these direct effects seem to be obtained by dithiol-disulphide modification of proteins and their active sites, as part of adaptive responses in oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Entamoeba histolytica-specific serum IgG, IgA, IgM and IgE antibodies were assayed in cases of amoebiasis in an endemic area. Patient groups consisted of amoebic liver abscess (n=18), pre-abscess hepatic amoebiasis (n=22) and amoebic colitis (n=30). Control subjects comprised 26 asymptomatic cyst passers, 13 giardiasis cases, 20 typhoid patients and 24 non-amoebic individuals. Serum IgG was assayed by ELISA, using a monoclonal anti IgG β- galactosidase (IgG β-gal) conjugate, a polyclonal avidin biotin horse radish peroxidase (AB-HRP), and a polyclonal anti IgG horse radish peroxidase (IgG HRP) conjugate. IgA and IgM were assayed by the β-gal ELISA and IgE by AB-HRP. Diagnostically significant IgG and IgA while lower IgM and IgE antibody levels were seen in extraintestinal cases. About 40% of suspected pre-abscess hepatic amoebiasis cases were confirmed by antibody estimation. All isotype levels in most dysentery cases were in the range of the controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by H-1, C-13, and Se-77 NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H2O2, tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a co-substrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO2Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO2Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This study was undertaken to evaluate the neuroprotective activity of Wedelia calendulacea against cerebral ischemia/reperfusion induced oxidative stress in the rats. Materials and Methods: The global cerebral ischemia was induced in male albino Wistar rats by occluding the bilateral carotid arteries for 30 min followed by 1 h and 4 h reperfusion. At various times of reperfusion, the histopathological changes and the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GST), and hydrogen peroxide (H(2)O(2)) activity and brain water content were measured. Results: The ischemic changes were preceded by increase in concentration of MDA, hydrogen peroxide and followed by decreased GPx, GR, and GST activity. Treatment with W. calendulacea significantly attenuated ischemia-induced oxidative stress. W. calendulacea administration markedly reversed and restored to near normal level in the groups pre-treated with methanolic extract (250 and 500 mg/kg, given orally in single and double dose/day for 10 days) in dose-dependent way. Similarly, W. calendulacea reversed the brain water content in the ischemia reperfusion animals. The neurodegenaration also conformed by the histopathological changes in the cerebral-ischemic animals. Conclusion: The findings from the present investigation reveal that W. calendulacea protects neurons from global cerebral-ischemic injury in rat by attenuating oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antithyroid drugs inhibit the thyroid hormone synthesis by inactivating the thyroid peroxidase and/or iodothyronine deiodinase, which are involved in iodination and deiodination reactions. Gold(I) compounds also inhibit the thyroid hormone synthesis by interacting with the selenocysteine residue of iodothyronine deiodinase. However, the chemical reactions between these two different classes of compounds have not been studied. In this paper, we describe the interaction of therapeutic gold(I) compounds with the commonly used thiourea-based antithyroid drug, methimazole. It is observed that the gold(I) phosphine complexes (R(3)PAuCl, where R = Me, Et, Ph) react with methimazole only upon deprotonation to produce the corresponding gold(I)-thiolate complexes. Addition of PPh(3) to the gold(I)-thiolates produces (R(3)PAuPPh(3))(+) (R = Me or Et), indicating the possibility of ligand exchange reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) inhibitors are important for the treatment of hypertension as they can decrease the formation of vasopressor hormone angiotensin II (Ang II) and elevate the levels of vasodilating hormone bradykinin. It is observed that bradykinin contains a Ser-Pro-Phe motif near the site of hydrolysis. The selenium analogues of captopril represent a novel class of ACE inhibitors as they also exhibit significant antioxidant activity. In this study, several di- and tripeptides containing selenocysteine and cysteine residues at the N-terminal were synthesized. Hydrolysis of angiotensin I (Ang I) to Ang II by ACE was studied in the presence of these peptides. It is observed that the introduction of L-Phe to Sec-Pro and Cys-Pro peptides significantly increases the ACE inhibitory activity. On the other hand, the introduction of L-Val or L-Ala decreases the inhibitory potency of the parent compounds. The presence of an L-Pro moiety in captopril analogues appears to be important for ACE inhibition as the replacement of L-Pro by L-piperidine 2-carboxylic acid decreases the ACE inhibition. The synthetic peptides were also tested for their ability to scavenge peroxynitrite (PN) and to exhibit glutathione peroxidase (GPx)-like activity. All the selenium-containing peptides exhibited good PN-scavenging and GPx activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogenperoxide (H2O2) is generated in mitochondria in aerobic cells as a minor product of electron transport, is inhibited selectively by phenolic acids (in animals) or salicylhydroxamate (in plants) and is regulated by hormones and environmental conditions. Failure to detect this activity is due to presence of H2O2-consuming reactions or inhibitors present in the reaction mixture. H2O2 has a role in metabolic regulation and signal transduction reactions. A number of enzymes and cellular activities are modified, mostly by oxidizing the protein-thiol groups, on adding H2O2 in mM concentrations. On complexing with vanadate, also occurring in traces, H2O2 forms diperoxovanadate (DPV), stable at physiological pH and resistant to degradation by catalase. DPV was found to substitute for H2O2 at concentrations orders of magnitude lower, and in presence of catalase, as a substrate for user reaction, horseradish peroxidase (HRP), and in inactivating glyceraldehyde-3-phosphate dehydrogenase. superoxide dismutase (SOD)-sensitive oxidation of NADH was found to operate as peroxovanadate cycle using traces of DPV and decameric vanadate (V-10) and reduces O-2 to peroxide (DPV in presence of free vanadate). This offers a model for respiratory burst. Diperoxovanadate reproduces several actions of H2O2 at low concentrations: enhances protein tyrosine phosphorylation, activates phospholipase D, produces smooth muscle contraction, and accelerates stress induced premature senescence (SIPS) and rounding in fibroblasts. Peroxovanadates can be useful tools in the studies on H2O2 in cellular activities and regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the synthesis, characterization and glutathione peroxidase and peroxynitrite scavenging activities of a series of stable spirodiazaselenuranes are described. The spiro compounds were synthesized in good yields by oxidative cyclization of diaryl selenides bearing amide moieties. All the selenides and spiro derivatives were characterized by H-1, C-13 and Se-77 NMR spectroscopy, mass spectral techniques and the structures of some of the spirodiazaselenuranes were confirmed by single crystal X-ray crystallography. The structures reveal that the selenium atom occupies the center of a distorted trigonal bipyramid core with two nitrogen atoms occupying the apical positions and two carbon atoms and the selenium lone pair occupying the equatorial positions. Mechanistic investigations indicate that the spirocyclization occurs via the formation of selenoxide intermediates. The new compounds were evaluated for their glutathione peroxidase (GPx) mimetic activity by using H2O2 as a substrate and glutathione (GSH) as a co-substrate. It was found that the substituents attached to the nitrogen atom of the selenazole ring have a significant effect on the GPx activity. While the introduction of electron withdrawing groups such as -Cl, -Br etc. to the phenyl ring decreases the activity, the introduction of electron donating groups such as -OH, -OMe significantly enhances the GPx activity of both diaryl selenides and spirodiazaselenuranes. In addition to GPx activity, the selenides and spiro derivatives were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. These studies indicate that the diarylselenides effectively inhibit the PN-mediated nitration and oxidation reactions by reacting with PN to produce the corresponding spirodiazaselenuranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for > 24 h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and nonprotein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 degrees C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6 h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-beta (TGF-beta) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-beta-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.