966 resultados para Man in the Iron Mask


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ancient Kinneret (Tēl Kinrōt [Hebrew]; Tell el-ʿOrēme [Arabic]) is located on a steep limestone hill on the northwestern shores of the Sea of Galilee (2508.7529 [NIG]). The site, whose settlement history began sometime during the Pottery-Neolithic or the early Chalcolithic period, is emerging as one of the major sites for the study of urban life in the Southern Levant during the Early Iron Age (c. 1130–950 BCE). Its size, accessibility by major trade routes, and strategic location between different spheres of cultural and political influence make Tēl Kinrōt an ideal place for studying the interaction of various cultures on urban sites, as well as to approach questions of ethnicity and regionalism during one of the most debated periods in the history of the ancient Levant. The paper will briefly discuss the settlement history of the site during the Early Iron Age. However, the main focus will lie on the material culture of the late Iron Age IB city that rapidly evolved to a regional center during the transition from the 11th to the 10th century BCE. During this period, ancient Kinneret features a multitude of cultural influences that reach from Egypt via the Central Hill Country until the Northern parts of Syria and the Amuq region. While there are indisputably close ties with the ‘Aramaean’ realm, there are also strong indications that there were – at the same time – vivid socio-economic links with the West, i.e. the Southern and Northern Mediterranean coasts and their hinterland. It will be argued that the resulting ‘cultural blend’ is a typical characteristic of the material culture of the Northern Jordan Rift Valley in the advent of the emerging regional powers of the Iron Age II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SBR759 is a novel polynuclear iron(III) oxide–hydroxide starch·sucrose·carbonate complex being developed for oral use in chronic kidney disease (CKD) patients with hyperphosphatemia on hemodialysis. SBR759 binds inorganic phosphate released by food uptake and digestion in the gastro-intestinal tract increasing the fecal excretion of phosphate with concomitant reduction of serum phosphate concentrations. Considering the high content of ∼20% w/w covalently bound iron in SBR759 and expected chronic administration to patients, absorption of small amounts of iron released from the drug substance could result in potential iron overload and toxicity. In a mechanistic iron uptake study, 12 healthy male subjects (receiving comparable low phosphorus-containing meal typical for CKD patients: ≤1000 mg phosphate per day) were treated with 12 g (divided in 3 × 4 g) of stable 58Fe isotope-labeled SBR759. The ferrokinetics of [58Fe]SBR759-related total iron was followed in blood (over 3 weeks) and in plasma (over 26 hours) by analyzing with high precision the isotope ratios of the natural iron isotopes 58Fe, 57Fe, 56Fe and 54Fe by multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Three weeks following dosing, the subjects cumulatively absorbed on average 7.8 ± 3.2 mg (3.8–13.9 mg) iron corresponding to 0.30 ± 0.12% (0.15–0.54%) SBR759-related iron which amounts to approx. 5-fold the basal daily iron absorption of 1–2 mg in humans. SBR759 was well-tolerated and there was no serious adverse event and no clinically significant changes in the iron indices hemoglobin, hematocrit, ferritin concentration and transferrin saturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bentonite and iron metals are common materials proposed for use in deep-seated geological repositories for radioactive waste. The inevitable corrosion of iron leads to interaction processes with the clay which may affect the sealing properties of the bentonite backfill. The objective of the present study was to improve our understanding of this process by studying the interface between iron and compacted bentonite in a geological repository-type setting. Samples of MX-80 bentonite samples which had been exposed to an iron source and elevated temperatures (up to 115ºC) for 2.5 y in an in situ experiment (termed ABM1) at the Äspö Hard Rock Laboratory, Sweden, were investigated by microscopic means, including scanning electron microscopy, μ-Raman spectroscopy, spatially resolved X-ray diffraction, and X-ray fluorescence. The corrosion process led to the formation of a ~100 mm thick corrosion layer containing siderite, magnetite, some goethite, and lepidocrocite mixed with the montmorillonitic clay. Most of the corroded Fe occurred within a 10 mm-thick clay layer adjacent to the corrosion layer. An average corrosion depth of the steel of 22–35 μm and an average Fe2+ diffusivity of 1–26×10–13 m2/s were estimated based on the properties of the Fe-enriched clay layer. In that layer, the corrosion-derived Fe occurred predominantly in the clay matrix. The nature of this Fe could not be identified. No indications of clay transformation or newly formed clay phases were found. A slight enrichment of Mg close to the Fe–clay contact was observed. The formation of anhydrite and gypsum, and the dissolution of some SiO<inf>2inf> resulting from the temperature gradient in the in situ test, were also identified. © 2014, Clay Minerals Society. All right reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and speciations depending on sedimentation environment, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in total Fe content (2-8%) are accompanied by changes in concentration of its reactive forms (acid extraction) and concentration of dissolved Fe in interstitial waters (1-14 µM). Variations in Mn content in bottom sediments (0.03-3.7%) and interstitial waters (up to 500 µM) correspond to high diagenetic mobility of this element. Changes in oxidation degree of chemical elements result in redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of bottom sediments with considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface layer bottom sediments (where manganese oxyhydroxide dominates among oxidants) to deeper layers (where sulfate of interstitial water serves as the main oxidant). Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5-0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from bottom sediments (Mn 0.05%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.