888 resultados para Mammal populations
Resumo:
Investigating macro-geographical genetic structures of animal populations is crucial to reconstruct population histories and to identify significant units for conservation. This approach may also provide information about the intraspecific flexibility of social systems. We investigated the history and current structure of a large number of populations in the communally breeding Bechstein's bat (Myotis bechsteinii). Our aim was to understand which factors shape the species' social system over a large ecological and geographical range. Using sequence data from one coding and one noncoding mitochondrial DNA region, we identified the Balkan Peninsula as the main and probably only glacial refugium of the species in Europe. Sequence data also suggest the presence of a cryptic taxon in the Caucasus and Anatolia. In a second step, we used seven autosomal and two mitochondrial microsatellite loci to compare population structures inside and outside of the Balkan glacial refugium. Central European and Balkan populations both were more strongly differentiated for mitochondrial DNA than for nuclear DNA, had higher genetic diversities and lower levels of relatedness at swarming (mating) sites than in maternity (breeding) colonies, and showed more differentiation between colonies than between swarming sites. All these suggest that populations are shaped by strong female philopatry, male dispersal, and outbreeding throughout their European range. We conclude that Bechstein's bats have a stable social system that is independent from the postglacial history and location of the populations. Our findings have implications for the understanding of the benefits of sociality in female Bechstein's bats and for the conservation of this endangered species.
Resumo:
Anopheles bellator is a small silvatic bromelia-breeding mosquito and is a primary human malaria vector species in Southern Brazil. The bromelia-breeding habitat of the species should accompany the Atlantic forest coastal distribution, where bromeliads are abundant. Nonetheless, records on An. bellator collections show a gap in the species geographical distribution. An. bellator has been recorded in Southern Brazil and in the Brazilian states of Bahia and Paraíba. It appers again in the island of Trinidad, in Trinidad and Tobago. The aim of this work was to measure gene flow between different populations of An. bellator collected in the northern and southern extremes of the geographic distribution of this species. Mosquitoes were captured in forest borders in Santa Catarina, São Paulo, and Bahia states in Brazil and in the island of Trinidad in Republic of Trinidad and Tobago. Genetic distances varied between 0.076 and 0.680, based on enzymatic profiles from 11 distinct isoenzymes. Results indicate the existence of low-level gene flow between Brazilian populations of An. bellator, and a gene flow was even lower between the Brazilian and the Trinidad populations. This finding lead us to hypothesize that An. bellator did not spread along the coast, but reached northeastern areas through inland routes.
Resumo:
The study of feces of terrestrial mammals brings out biological and ecological data such as the species presence, diet, behaviour, territory, parasitic fauna, and home-range use, which can be applied for conservation projects and support paleoecological research that use coprolites as the main source of study. Although the new biotechnological techniques allow more accurate data, the diagnosis based on morphometric analyses permits the primary identification of the taxonomic group origin to support the best choice of subsequent analyses. We present the compilation list of fecal shape and measurements available in the literature published in North America, Eastern and Southern Africa, Europe, and new data from Brazil. Shape and diameters are the best characteristics for taxonomic identification. Feces were assembled in 9 groups that reflect the Order, sometimes the Family, and even their common origin.
Resumo:
Chagas disease, caused by the protozoan Trypanosoma cruzi, has a variable clinical course, ranging from symptomless infection to severe chronic disease with cardiovascular or gastrointestinal involvement or, occasionally, overwhelming acute episodes. The factors influencing this clinical variability have not been elucidated, but it is likely that the genetic variability of both the host and the parasite are of importance. In this work we review the the genetic structure of T. cruzi populations and analyze the importance of genetic variation of the parasite in the pathogenesis of the disease under the light of the histotropic-clonal model.
Resumo:
Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes) on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI). Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian) and marsupial (metatherian) lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought
Resumo:
Anopheles cruzii is a small sylvatic mosquito and primary human Plasmodium vector in Southern Brazil. The distribution of this bromeliad-breeding mosquito follows the Atlantic forest coastal distribution, where bromeliads are abundant. Morphological, genetic, and molecular polymorphisms among different populations have been reported and it has recently been suggested that An. cruzii is a complex of cryptic species. The aim of this work is to analyze the gene flow between different populations of An. cruzii collected in four localities within the geographic distribution range of the species, and to examine if An. cruzii is a complex of cryptic species. The genetic distances show that populations of the states of Santa Catarina, São Paulo, and Rio de Janeiro are genetically closer (0.032 to 0.083) than populations of Bahia (0.364 to 0.853) based on profiles from 10 distinct isoenzyme loci. The Fst was lower (0.077) when the Bahia population was excluded than when it was included (0.300) in the analyses. The inferred number of migrants per generation was 2.99 individuals among populations from the states of Santa Catarina, São Paulo, and Rio de Janeiro and 0.58 migrants per generation among all populations. Results suggest that An. cruzii is a complex of species and that the specimes of state of Bahia can be considered as belonging to a species that is distinct from other three closely-related populations studied.
Resumo:
Excessive drinking contributes significantly to social problems, physical and psychological illness, injury and death. Hidden effects include increased levels of violence, accidents and suicide. Most alcohol-related harm is caused by excessive drinkers whose consumption exceeds recommended drinking levels, not the drinkers with severe alcohol dependency problems. One way to reduce consumption levels in a community may be to provide a brief intervention in primary care over one to four sessions. This is provided by healthcare workers such as general physicians, nurses or psychologists. In general practice, patients are routinely asked about alcohol consumption during registration, general health checks and as part of health screening (using a questionnaire). They tend not to be seeking help for alcohol problems when presenting. The intervention they are offered includes feedback on alcohol use and harms, identification of high risk situations for drinking and coping strategies, increased motivation and the development of a personal plan to reduce drinking. It takes place within the time-frame of a standard consultation, 5 to 15 minutes for a general physician, longer for a nurse.A total of 29 controlled trials from various countries were identified, in general practice (24 trials) or an emergency setting (five trials). Participants drank an average of 306 grams of alcohol (over 30 standard drinks) per week on entry to the trial. Over 7000 participants with a mean age of 43 years were randomised to receive a brief intervention or a control intervention, including assessment only. After one year or more, people who received the brief intervention drank less alcohol than people in the control group (average difference 38 grams/week, range 23 to 54 grams). For men (some 70% of participants), the benefit of brief intervention was a difference of 57 grams/week, range 25 to 89 grams (six trials). The benefit was not clear for women. The benefits of brief intervention were similar in the normal clinical setting and in research settings with greater resources. Longer counselling had little additional benefit.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
We assessed the distribution of Trypanosoma cruzi infection in peridomestic triatomines collected manually at a district-wide scale in rural villages around Olta, Western Argentina, and typed the isolated strains according to their pathogenicity to laboratory mice. Of 1623 triatomines examined, only 14 (0.9%) were infected with T. cruzi based on microscopical examination of feces. The prevalence of T. cruzi infection was 0.8% in Triatoma infestans, 2.3% in T. guasayana, and nil in T. garciabesi, T. platensis, and T. eratyrusiformis. Local transmission occurred in kitchens, store-rooms and goat corrals or nearby, though at very low levels. T. cruzi was detected by at least one parasitological method in 11 (79%) of 14 microscope-positive bugs. Hemoculture was the most sensitive method (67%) followed by culture of organ homogenates, histopathology or xenodiagnosis of inoculated suckling mice (55-58%), and culture of microscope-positive bug feces (46%). The evidence suggests that most of the isolated T. cruzi strains would be myotropic type III. Our study establishes for the first time that peridomestic, microscope-positive T. guasayana nymphs were actually infected with T. cruzi, and may be implicated as a putative secondary vector of T. cruzi in domestic or peridomestic sites.
Resumo:
Resistance to cypermethrin of different Aedes aegypti Brazilian populations, collected at two successive periods (2001 and 2002/2003), was monitored using the insecticide-coated bottles bioassay. Slight modifications were included in the method to discriminate between mortality and the knock down effect. Although this pyrethroid was recently started to be used in the country to control the dengue vector, a decrease in susceptibility was noted between both periods analyzed, particularly in the city of Rio de Janeiro. The results indicate that resistance is due at least in part to a target site alteration.
Resumo:
Triatoma dimidiata is one of the major vectors of Chagas disease in Latin America. Its range includes Mexico, all countries of Central America, Colombia, and Ecuador. In light of recent genetic analysis suggesting that the possible origin of this species is the Yucatan peninsula, we have analyzed populations from the state of Yucatan, San Luis Potosi, and Veracruz in Mexico, and a population from the southern region of the Yucatan peninsula located in Northern Guatemala, the region of El Peten. Classical morphometry including principal component, discriminant, sexual dimorphism, and wing asymmetry was analyzed. San Luis Potosi and Veracruz populations were indistinguishable while clearly separate from Yucatan and Peten populations. Despite important genetic differences, Yucatan and Peten populations were highly similar. Yucatan specimens were the smallest in size, while females were larger than males in all populations. Only head characters were necessary to distinguish population level differences, although wing fluctuating asymmetry was present in all populations. These results are discussed in light of recent findings suggesting genetic polymorphism in most populations of Triatoma dimidiata south of Chiapas to Ecuador.
Resumo:
One of the commitments given in the Choosing Health white paper was to develop and implement a comprehensive public health information and intelligence strategy. This work was led by a specially constituted Task Force and informed by extensive public and professional consultation conducted in 2006. The resulting strategy sets out an approach that will strengthen health information and intelligence resources across England.This document reports on the results of consultation on the strategy.
Resumo:
In Brazil, four populations of Lutzomyia longipalpis each producing different sex pheromones are recognised. It has been suggested that these chemotype populations represent true sibling species. In this study we present the results of an analysis, by coupled gas cromotography - mass spectrometry, of the pheromones of males L. longipalpis from two different municipalities of the state of São Paulo. Our study showed that L. longipalpis from these two municipalities produced different sex pheromones from each other. This coupled with the remarkable difference between the epidemiological situation in Araçatuba and Espírito Santo do Pinhal, suggests that the (S)-9-methylgermacrene-B and cembrene-1 populations may have different vectorial capacities.
Resumo:
Abstract Life history traits encompass all the decisions concerning fitness an individual is faced with during his life. The study of these traits is crucial to understand the factors shaping the biology of living organisms. Up until now, most of the information on the evolution of life history traits comes from laboratory studies. While these studies are interesting to test the effect of specific parameters, their conclusions are difficult to extrapolate to natural populations. Investigating the evolution of life history traits in natural populations is of great interest. This may be tricky because it requires information on reproduction, survival and morphology of individuals. Mark-recapture methods allow most of this information to be obtained. However, when direct observations of a species are not possible due to its ecology, indirect methods must be used to infer lifetime reproductive success. In this case, molecular markers are particularly helpful in assessing the genetic relationships between individuals and allow the construction of a pedigree. This thesis focuses on a natural population of a small insectivorous mammal, the greater white-toothed shrew, Crocidura russula. Because of its hidden lifestyle, the two complementary techniques mentioned above were combined to gather information on this population. The data were used to explore diverse aspects of evolutionary biology. We demonstrated that the high genetic variance displayed by the species was not maintained by its mating system because this shrew was less monogamous than previously thought. The large genetic diversity was most likely promoted by gene flow from the neighborhood. Dispersal was thus a central topic in this thesis. We showed that dispersal was not driven by inbreeding avoidance. In addition, we did not find any inbreeding depression in the population. Dispersal was promoted by a high number of vacant territories in the population for both sexes, meaning that territory acquisition played an important role in driving dispersal. Moreover, dispersal propensity was shown to have a genetic basis and, once achieved, to have no effect on individual fitness. Body mass was found to be a life history trait strongly influenced by sexual and viability selection in both sexes. Larger individuals had higher access to reproduction through territory acquisition and defense than lighter ones. By contrast, intermediate size individuals were favored by viability selection presumably because of ecological constraints and metabolic costs. Finally, we demonstrated that the majority of the life history traits in our shrew population has the potential to evolve because they maintained substantial amounts of additive genetic variance. Nonetheless, life history traits had no significant heritability due to their high level of nonadditive or environmental variance. Résumé Les traits d'histoire de vie comprennent toutes les décisions auxquelles un individu est confronté au cours de sa vie et qui concernent sa valeur adaptative. L'étude de ces traits est cruciale pour comprendre les facteurs qui façonnent la biologie des êtres vivants. Jusqu'à ce jour, la majorité des informations sur l'évolution des traits d'histoire de vie provient d'études réalisées en laboratoire. Alors que ces études sont intéressantes pour tester l'effet de paramètres spécifiques, leurs conclusions sont difficilement extrapolables aux populations naturelles. Il est particulièrement intéressant d'étudier l'évolution des traits d'histoire de vie dans des populations naturelles. Toutefois, ces études peuvent se révéler difficiles parce qu'elles requièrent des informations sur la reproduction, la survie et la morphologie des individus. Des méthodes de marquage-recapture permettent d'obtenir ces informations. Cependant, lorsque l'écologie de l'espèce rend les obervations directes impossibles, des méthodes indirectes doivent être utilisées pour obtenir le succès reproducteur des individus. Dans ce cas, les marqueurs moléculaires sont particulièrement utiles pour évaluer les relations génétiques entre individus et permettre la construction d'un pedigree. Cette thèse porte sur une population naturelle d'un petit mammifère insectivore, la musaraigne musette, Crocidura russula. Parce que cette espèce présente un mode de vie souterrain, les deux techniques complémentaires mentionnées ci-dessus ont été combinées pour acquérir les informations nécessaires. Les données ont été utilisées pour explorer divers aspects de biologie evolutive. Nous avons montré que la grande quantité de variance génétique trouvée chez cette espèce n'est pas maintenue par son système d'appariement. Celle-ci s'est en effet avérée être moins monogame que ce qui était admis jusqu'ici. Sa grande diversité génétique est plutôt entretenue par le flux de gènes provenant du voisinage. La dispersion a donc été un sujet phare dans cette thèse. Nous avons montré qu'elle n'est pas provoquée par un évitement de la consanguinité et nous n'avons pas trouvé de dépression de consanguité dans notre population. L'acquisition d'un territoire joue par contre un rôle important dans la dispersion. En outre, la dispersion possède une base génétique chez cette espèce. De plus, une fois qu'ils ont dispersé, les individus n'ont pas une valeur adaptative differente d'individus philopatriques. Le poids s'est avéré être un trait d'histoire de vie fortement influencé par la sélection sexuelle et de viabilité chez les deux sexes. Les gros individus ont accès à la reproduction parce qu'ils acquièrent et défendent un territoire plus facilement que les plus légers. Au contraire, les individus de taille intermédiaire sont favorisés par la sélection de viabilité, certainement à cause de contraintes écologiques et de coûts métaboliques. Finalement, nous avons montré que la majorité des traits d'histoire de vie dans notre population a le potentiel d'évoluer parce qu'elle maintient des quantités considérables de variance génétique additive. Néanmoins, l'héritabilité de ces traits d'histoire de vie n'est pas significative à cause de la grande quantité de variance non-additive ou environmentale associée à ces traits.
Resumo:
Resistant (Taim, RS) and susceptible albino (Joinville, SC) Biomphalaria tenagophila populations were kept together, at different proportions, throughout a 18-month-period. Some of the snail groups were submitted to Schistosoma mansoni infection. The targets of this study were (a) to analyze the populational dynamics among resistant and susceptible individuals to S. mansoni; (b) to study the resistance phenotype in descendants of cross-breeding; (c) to observe whether the parasite could exert any kind of selection in those snail populations. Throughout the experiment it could be observed that the susceptible B. tenagophila strain (Joinville) underwent a selective pressure of the parasite that was negative, since the individuals showed a high mortality rate. Although B. tenagophila (Taim) population presented a higher mortality rate without pressure of the parasite, this event was compensated by a reproductive capacity. B. tenagophila Taim was more fecund than B. tenagophila Joinville and was able to transmit the resistance character to their descendants. F1 generation obtained by cross-breeding between resistant and susceptible lineages was completely resistant to S. mansoni infection, irrespective of the Taim proportion. Moreover, less than 5% of F2 progeny were susceptible to S. mansoni infection.
Resumo:
BACKGROUND:Maternally transmitted symbionts have evolved a variety of ways to promote their spread through host populations. One strategy is to hamper the reproduction of uninfected females by a mechanism called cytoplasmic incompatibility (CI). CI occurs in crosses between infected males and uninfected females and leads to partial to near-complete infertility. CI-infections are under positive frequency-dependent selection and require genetic drift to overcome the range of low frequencies where they are counter-selected. Given the importance of drift, population sub-division would be expected to facilitate the spread of CI. Nevertheless, a previous model concluded that variance in infection between competing groups of breeding individuals impedes the spread of CI.RESULTS:In this paper we derive a model on the spread of CI-infections in populations composed of demes linked by restricted migration. Our model shows that population sub-division facilitates the invasion of CI. While host philopatry (low migration) favours the spread of infection, deme size has a non-monotonous effect, with CI-invasion being most likely at intermediate deme size. Individual-based simulations confirm these predictions and show that high levels of local drift speed up invasion but prevent high levels of prevalence across the entire population. Additional simulations with sex-specific migration rates further show that low migration rates of both sexes are required to facilitate the spread of CI.CONCLUSION:Our analyses show that population structure facilitates the invasion of CI-infections. Since some level of sub-division is likely to occur in most natural populations, our results help to explain the high incidence of CI-infections across species of arthropods. Furthermore, our work has important implications for the use of CI-systems in order to genetically modify natural populations of disease vectors.