601 resultados para Magnetoelectric couplings
Resumo:
The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Some years ago, it was shown how fermion self-interacting terms of the Thirring-type impact the usual structure of massless two-dimensional gauge theories [1]. In that work only the cases of pure vector and pure chiral gauge couplings have been considered and the corresponding Thirring term was also pure vector and pure chiral respectively, such that the vector ( or chiral) Schwinger model should not lose its chirality structure due to the addition of the quartic interaction term. Here we extend this analysis to a generalized vector and axial coupling both for the gauge interaction and the quartic fermionic interactions. The idea is to perform quantization without losing the original structure of the gauge coupling. In order to do that we make use of an arbitrariness in the definition of the Thirring-like interaction.
Resumo:
The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.
Resumo:
The possibility of setting constraints on the Couplings of a scalar (pseudoscalar) Higgs boson to the tau lepton and the b quark in the reactions e(+)e(-)-->v (v) over bar tau(+)tau(-) and e(+)e(-)-->v (v) over barb (b) over bar at a future linear electron-positron collider of total energy roots = 500 GeV is studied. The admixture of a new hypothetical pseudoscalar state of the Higgs boson in the Hf (f) over bar vertex is parametrized in the form (mf/v)(a+igamma(5)b). on the basis of an analysis of differential distributions for the processes under study, it is shown that data from the future linear collider TESLA will make it possible to constrain the parameters a and b as -0.32 less than or equal to Deltaa less than or equal to 0.24 and -0.73 less than or equal to b less than or equal to 0.73 in the case of the reaction e(+)e(-)-->v (v) over bar tau(+)tau(-) and as -0.026 less than or equal to Deltaa less than or equal to 0.027 and -0.23 less than or equal to b less than or equal to 0.23 in the case of the reaction e(+)e(-) --> v (v) over barb (b) over bar. It is emphasized that the contribution of the fusion Subprocess WW --> H in the channel involving an electron neutrino is of particular importance, since this contribution enhances the sensitivity of data to the parameters being analyzed. (C) 2004 MAIK Nauka/Inierperiodica.
Resumo:
We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80(3), 140(3)) and for three different lattice couplings in the scaling region (beta = 4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t). We also verify that the (real-space) data show good scaling in the range t is an element of[0, 3]fm and can be fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated field theory and may be viewed as a manifestation of confinement.
Resumo:
We analyze the potentiality of the CERN Large Hadron Collider to probe the Higgs boson couplings to the electroweak gauge bosons. We parametrize the possible deviations of these couplings due to new physics in a model independent way, using the most general dimension-six effective lagrangian where the SU(2)(L) x U(1)(Y) is realized linearly. For intermediate Higgs masses, the decay channel into two photons is the most important one for Higgs searches at the LHC, We study the effects of these new interactions on the Higgs production mechanism and its subsequent decay into two photons. We show that the LHC will be sensitive to new physics scales beyond the present limits extracted from the LEP and Tevatron physics. (C) 2000 Elsevier B.V. B,V, All rights reserved.
Resumo:
One of the models proposed for the origin of ultra high energy cosmic rays (UHECR's) suggests that these events are the decay products of relic superheavy metastable particles, which we call S particles. These particles can be produced in the reheating period following the inflationary epoch of the early Universe. We study this possibility and obtain constraints on some parameters such as the lifetime and direct couplings of the X-particle to the inflaton field from the requirement that they are responsible for the observed UHECR flux.
Resumo:
We study Compton scattering in the noncommutative (NC) counterpart of QED. Interactions in NC QED have momentum dependent phase factors and the gauge fields have Yang-Mills type couplings; this modifies the cross sections and they are different from the commuting standard model. Collider signals of noncommutative space-time are studied at the Next Linear Collider (NLC) operating in the e gamma mode. Results for different polarized cases are presented and it is shown that the Compton process can probe the noncommutative scale in the range of 1-2.5 TeV for typical proposed NLC energies.
Resumo:
We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb(-1) of data collected with the DO detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W, boson masses. We exclude masses between 200 and 610 GeV for a W' boson with standard-model-like couplings, between 200 and 630 GeV for a W, boson with right-handed couplings that is allowed to decay to both leptons and quarks, and between 200 and 670 GeV for a W' boson with right-handed couplings that is only allowed to decay to quarks. (c) 2006 Elsevier B.V. All rights reserved.