358 resultados para MTs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spindle pole body (SPB) is the major microtubule-organizing center of budding yeast and is the functional equivalent of the centrosome in higher eukaryotic cells. We used fast-frozen, freeze-substituted cells in conjunction with high-voltage electron tomography to study the fine structure of the SPB and the events of early spindle formation. Individual structures were imaged at 5–10 nm resolution in three dimensions, significantly better than can be achieved by serial section electron microscopy. The SPB is organized in distinct but coupled layers, two of which show ordered two-dimensional packing. The SPB central plaque is anchored in the nuclear envelope with hook-like structures. The minus ends of nuclear microtubules (MTs) are capped and are tethered to the SPB inner plaque, whereas the majority of MT plus ends show a distinct flaring. Unbudded cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is ∼150 nm. MTs growing from duplicated but not separated SPBs have a median length of ∼130 nm and interdigitate over the bridge that connects the SPBs. As a bipolar spindle is formed, the median MT length increases to ∼300 nm and then decreases to ∼30 nm in late anaphase. Three-dimensional models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the three-dimensional structure of the yeast mitotic spindle and further our understanding of the organization of the SPB in intact cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purified Golgi membranes were mixed with cytosol and microtubules (MTs) and observed by video enhanced light microscopy. Initially, the membranes appeared as vesicles that moved along MTs. As time progressed, vesicles formed aggregates from which membrane tubules emerged, traveled along MTs, and eventually generated extensive reticular networks. Membrane motility required ATP, occurred mainly toward MT plus ends, and was inhibited almost completely by the H1 monoclonal antibody to kinesin heavy chain, 5′-adenylylimidodiphosphate, and 100 μM but not 20 μM vanadate. Motility was also blocked by GTPγS or AlF4− but was insensitive to AlCl3, NaF, staurosporin, or okadaic acid. The targets for GTPγS and AlF4− were evidently of cytosolic origin, did not include kinesin or MTs, and were insensitive to several probes for trimeric G proteins. Transport of Golgi membranes along MTs mediated by a kinesin has thus been reconstituted in vitro. The motility is regulated by one or more cytosolic GTPases but not by protein kinases or phosphatases that are inhibited by staurosporin or okadaic acid, respectively. The pertinent GTPases are likely to be small G proteins or possibly dynamin. The in vitro motility may correspond to Golgi-to-ER or Golgi-to-cell surface transport in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homologous recombination hotspots increase the frequency of recombination in nearby DNA. The M26 hotspot in the ade6 gene of Schizosaccharomyces pombe is a meiotic hotspot with a discrete, cis-acting nucleotide sequence (5′-ATGACGT-3′) defined by extensive mutagenesis. A heterodimeric M26 DNA binding protein, composed of subunits Mts1 and Mts2, has been identified and purified 40,000-fold. Cloning, disruption, and genetic analyses of the mts genes demonstrate that the Mts1/Mts2 heterodimer is essential for hotspot activity. This provides direct evidence that a specific trans-acting factor, binding to a cis-acting site with a unique nucleotide sequence, is required to activate this meiotic hotspot. Intriguingly, the Mts1/Mts2 protein subunits are identical to the recently described transcription factors Atf1 (Gad7) and Pcr1, which are required for a variety of stress responses. However, we report differential dependence on the Mts proteins for hotspot activation and stress response, suggesting that these proteins are multifunctional and have distinct activities. Furthermore, ade6 mRNA levels are equivalent in hotspot and nonhotspot meioses and do not change in mts mutants, indicating that hotspot activation is not a consequence of elevated transcription levels. These findings suggest an intimate but separable link between the regulation of transcription and meiotic recombination. Other studies have recently shown that the Mts1/Mts2 protein and M26 sites are involved in meiotic recombination elsewhere in the S. pombe genome, suggesting that these factors help regulate the timing and distribution of homologous recombination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oncoprotein18/stathmin (Op18) is a microtubule (MT) destabilizing protein that is inactivated during mitosis by phosphorylation at four Ser-residues. Op18 has at least two functions; the N-terminal region is required for catastrophe-promotion (i.e., transition from elongation to shortening), while the C-terminal region is required to inhibit MT-polymerization rate in vitro. We show here that a “pseudophosphorylation” derivative of Op18 (i.e., four Ser- to Glu-substitutions at phosphorylation sites) exhibits a selective loss of catastrophe-promoting activity. This is contrasted to authentic phosphorylation, which efficiently attenuates all activities except tubulin binding. In intact cells, overexpression of pseudophosphorylated Op18, which is not phosphorylated by endogenous kinases, is shown to destabilize interphase MTs but to leave spindle formation untouched. To test if the mitotic spindle is sensitive only to the catastrophe-promoting activity of Op18 and resistant to C-terminally associated activities, N- and C-terminal truncations with defined activity-profiles were employed. The cell-cycle phenotypes of nonphosphorylatable mutants (i.e., four Ser- to Ala-substitutions) of these truncation derivatives demonstrated that catastrophe promotion is required for interference with the mitotic spindle, while the C-terminally associated activities are sufficient to destabilize interphase MTs. These results demonstrate that specific Op18 derivatives with defined activity-profiles can be used as probes to distinguish interphase and mitotic MTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of “mitotic chromatin.” Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using monoclonal tubulin and actin antibodies, Al-mediated alterations to microtubules (MTs) and actin microfilaments (MFs) were shown to be most prominent in cells of the distal part of the transition zone (DTZ) of an Al-sensitive maize (Zea mays L.) cultivar. An early response to Al (1 h, 90 μm) was the depletion of MTs in cells of the DTZ, specifically in the outermost cortical cell file. However, no prominent changes to the MT cytoskeleton were found in elongating cells treated with Al for 1 h in spite of severe inhibition of root elongation. Al-induced early alterations to actin MFs were less dramatic and consisted of increased actin fluorescence of partially disintegrated MF arrays in cells of the DTZ. These tissue- and development-specific alterations to the cytoskeleton were preceded by and/or coincided with Al-induced depolarization of the plasma membrane and with callose formation, particularly in the outer cortex cells of the DTZ. Longer Al supplies (>6 h) led to progressive enhancements of lesions to the MT cytoskeleton in the epidermis and two to three outer cortex cell files. Our data show that the cytoskeleton in the cells of the DTZ is especially sensitive to Al, consistent with the recently proposed specific Al sensitivity of this unique, apical maize root zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biochemistry and genetics are both required to elucidate the function of macromolecules. There is no question that metallothioneins (MTs) have unique biochemical properties, but genetic experiments have not substantiated the importance of MTs under physiological conditions. Even after thousands of studies describing the structure, biochemical characteristics, tissue distribution, induction, and consequences of genetic disruption and deliberate overexpression, the evolutionary forces that led to the initial appearance, gene duplications, and nearly ubiquitous expression of MTs remain enigmatic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial and temporal expression patterns of metallothionein (MT) isoforms MT1a and MT2a were investigated in vegetative and reproductive tissues of untreated and copper-treated Arabidopsis by in situ hybridization and by northern blotting. In control plants, MT1a mRNA was localized in leaf trichomes and in the vascular tissue in leaves, roots, flowers, and germinating embryos. In copper-treated plants, MT1a expression was also observed in the leaf mesophyll and in vascular tissue of developing siliques and seeds. In contrast, MT2a was expressed primarily in the trichomes of both untreated and copper-treated plants. In copper-treated plants, MT2a mRNA was also expressed in siliques. Northern-hybridization studies performed on developing seedlings and leaves showed temporal variations of MT1a gene expression but not of MT2a expression. The possible implications of these findings for the cellular roles of MTs in plants are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoactivation of caged fluorescent tubulin was used mark the microtubule (MT) lattice and monitor MT behavior in interphase cells. A broadening of the photoactivated region occurred as MTs moved bidirectionally. MT movement was not inhibited when MT assembly was suppressed with nocodazole or Taxol; MT movement was suppressed by inhibition of myosin light chain kinase with ML7 or by a peptide inhibitor. Conversely, MT movement was increased after inhibition of cytoplasmic dynein with the antibody 70.1. In addition, the half-time for MT turnover was decreased in cells treated with ML7. These results demonstrate that myosin II and cytoplasmic dynein contribute to a balance of forces that regulates MT organization, movement, and turnover in interphase cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously identified a testicular phosphoprotein that binds to highly conserved sequences (Y and H elements) in the 3' untranslated regions (UTRs) of testicular mRNAs and suppresses in vitro translation of mRNA constructs that contain these sequences. This protein, testis/brain RNA-binding protein (TB-RBP) also is abundant in brain and binds to brain mRNAs whose 3' UTRs contain similar sequences. Here we show that TB-RBP binds specific mRNAs to microtubules (MTs) in vitro. When TB-RBP is added to MTs reassembled from either crude brain extracts or from purified tubulin, most of the TB-RBP binds to MTs. The association of TB-RBP with MTs requires the assembly of MTs and is diminished by colcemid, cytochalasin D, and high levels of salt. Transcripts from the 3' UTRs of three mRNAs that contain the conserved sequence elements (transcripts for protamine 2, tau protein, and myelin basic protein) are linked by TB-RBP to MTs, whereas transcripts that lack the conserved sequences do not bind TB-RBP. We conclude that TB-RBP serves as an attachment protein for the MT association of specific mRNAs. Considering its ability to arrest translation in vitro, we propose that TB-RBP functions in the storage and transportation of mRNAs to specific intracellular sites where they are translated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isozyme form of eukaryotic initiation factor 4F [eIF-(iso)4F] from wheat germ is composed of a p28 subunit that binds the 7-methylguanine cap of mRNA and a p86 subunit having unknown function. The p86 subunit was found to have limited sequence similarity to a kinesin-like protein encoded by the katA gene of Arabidopsis thaliana. Native wheat germ eIF-(iso)4F and bacterially expressed p86 subunit and p86-p28 complex bound to taxol-stabilized maize microtubules (MTs) in vitro. Binding saturation occurred at 1 mol of p86 per 5-6 mol of polymerized tubulin dimer, demonstrating a substoichiometric interaction of p86 with MTs. No evidence was found for a direct interaction of the p28 subunit with MTs. Unlike kinesin, cosedimentation of eIF-(iso)4F with MTs was neither reduced by MgATP nor enhanced by adenosine 5'-[gamma-imido]triphosphate. Both p86 subunit and p86-p28 complex induced the bundling of MTs in vitro. The p86 subunit was immunolocalized to the cytosol in root maize cells and existed in three forms: fine particles, coarse particles, and linear patches. Many coarse particles and linear patches were colocalized or closely associated with cortical MT bundles in interphase cells. The results indicate that the p86 subunit of eIF-(iso)4F is a MT-associated protein that may simultaneously link the translational machinery to the cytoskeleton and regulate MT disposition in plant cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motor domains of the Drosophila minus-end-directed microtubule (MT) motor protein ncd, were found to saturate microtubule binding sites at a stoichiometry of approximately one motor domain per tubulin dimer. To determine the tubulin subunit(s) involved in binding to ncd, mixtures of ncd motor domain and MTs were treated with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide) (EDC). EDC treatment generated covalently cross-linked products of ncd and alpha-tubulin and of ncd and beta-tubulin, indicating that the ncd motor domain interacts with both alpha- and beta-tubulin. When the Drosophila kinesin motor domain protein was substituted for the ncd motor domain, cross-linked products of kinesin and alpha-tubulin and of kinesin and beta-tubulin were produced. EDC treatment of mixtures of ncd motor domain and unassembled tubulin dimers or of kinesin motor domain and unassembled tubulin dimers produced the same motor-tubulin products generated in the presence of MTs. These results indicate that kinesin family motors of opposite polarity interact with both tubulin monomers and support a model in which some portion of each protein's motor domain overlaps adjacent alpha- and beta-tubulin subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis has been devoted to the synthesis and investigation of functional properties of silicon carbide thin films and nanowires. The work took profit from the experience of the research group in the synthesis of 3C-SiC from vapour phase. 3C-SiC thin films Thin films heteroepitaxy on silicon substrates was carried out in a vapour phase epitaxy reactor. The initial efforts were committed to the process development in order to enhance the crystal quality of the epi-layer. The carbonization process and a buffer layer procedure were optimized in order to obtain good quality monocrystalline 3C-SiC layers. The films characterization was used not only to improve the entire process, but also to assess the crystalline quality and to identify the defects. Methyltrichlorosilane (MTS) was introduced during the synthesis to increase the growth rate and enhance crystalline quality. The effect of synthesis parameters such as MTS flow and process temperature was studied in order to promote defect density reduction and the release of the strain due to lattice mismatch between 3C-SiC and silicon substrate. In-growth n-type doping was implemented using a nitrogen gas line and the effect of different synthesis parameters on doping level was studied. Raman measurements allowed a contactless characterization and evaluation of electrically active dopant. The effect of MTS on nitrogen incorporation was investigated and a promotion of dopant concentration together with a higher growth rate were demonstrated. This result allows to obtain higher doping concentrations without deteriorating crystal quality in 3C-SiC and, to the best of our knowledge, it has never been demonstrated before. 3C-SiC nanowires Core-shell SiC-SiO2 nanowires were synthesized using a chemical vapour deposition technique in an open tube configuration reactor on silicon substrates. Metal catalyst were used to promote a uniaxial growth and a dense bundle of nanowires 100 µm long and 60 nm thick was obtained. Substrate preparation was found to be fundamental in order to obtain a uniform nanowire density. Morphological characterization was carried out using scanning electron microscopy and the analysis of structural, compositional, optical properties is reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdução: A esclerose mesial temporal (EMT) é a principal causa de epilepsia resistente ao tratamento medicamentoso. Pacientes com EMT apresentam dificuldades no processamento semântico e fonológico de linguagem e maior incidência de reorganização cerebral da linguagem (bilateral ou à direita) em relação à população geral. A ressonância magnética funcional (RMf) permite avaliar a reorganização cerebral das redes de linguagem, comparando padrões de ativação cerebral entre diversas regiões cerebrais. Objetivo: Investigar o desempenho linguístico de pacientes com EMT unilateral esquerda e direita e a ocorrência de reorganização das redes de linguagem com RMf para avaliar se a reorganização foi benéfica para a linguagem nestes pacientes. Métodos: Utilizamos provas clínicas de linguagem e paradigmas de nomeação visual e responsiva para RMf, desenvolvidos para este estudo. Foram avaliados 24 pacientes com EMTe, 22 pacientes com EMTd e 24 controles saudáveis, submetidos a provas de linguagem (fluência semântica e fonológica, nomeação de objetos, verbos, nomes próprios e responsiva, e compreensão de palavras) e a três paradigmas de linguagem por RMf [nomeação por confrontação visual (NCV), nomeação responsiva à leitura (NRL) e geração de palavras (GP)]. Seis regiões cerebrais de interesse (ROI) foram selecionadas (giro frontal inferior, giro frontal médio, giro frontal superior, giro temporal inferior, giro temporal médio e giro temporal superior). Índices de Lateralidade (ILs) foram calculados com dois métodos: bootstrap, do programa LI-Toolbox, independe de limiar, e PSC, que indica a intensidade da ativação cerebral de cada voxel. Cada grupo de pacientes (EMTe e EMTd) foi dividido em dois subgrupos, de acordo com o desempenho em relação aos controles na avaliação clinica de linguagem. O <= -1,5 foi utilizado como nota de corte para dividir os grupos em pacientes com bom e com mau desempenho de linguagem. Em seguida, comparou-se o desempenho linguístico dos subgrupos ao índices IL-boot. Resultados: Pacientes com EMT esquerda e direita mostraram pior desempenho que controles nas provas clínicas de nomeação de verbos, nomeação de nomes próprios, nomeação responsiva e fluência verbal. Os mapas de ativação cerebral por RMf mostraram efeito BOLD em regiões frontais e temporoparietais de linguagem. Os mapas de comparação de ativação cerebral entre os grupos revelaram que pacientes com EMT esquerda e direita apresentam maior ativação em regiões homólogas do hemisfério direito em relação aos controles. Os ILs corroboraram estes resultados, mostrando valores médios menores para os pacientes em relação aos controles e, portanto, maior simetria na representação da linguagem. A comparação entre o IL-boot e o desempenho nas provas clínicas de linguagem indicou que, no paradigma de nomeação responsiva à leitura, a reorganização funcional no giro temporal médio, e possivelmente, nos giros temporal inferior e superior associou-se a desempenho preservado em provas de nomeação. Conclusão: Pacientes com EMT direita e esquerda apresentam comprometimento de nomeação e fluência verbal e reorganização da rede cerebral de linguagem. A reorganização funcional de linguagem em regiões temporais, especialmente o giro temporal médio associou-se a desempenho preservado em provas de nomeação em pacientes com EMT esquerda no paradigma de RMf de nomeação responsiva à leitura

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.