920 resultados para MICROBIAL METABOLIC QUOTIENT (QCO(2))


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectivos: A prevalência de Sindroma Metabólica (SM) e diabetes é variável consoante a definição utilizada, assim como com a região geográfica e o grupo étnico estudado. Não existem estudos em indivíduos portugueses com suspeita de doença arterial coronária. Analisámos a prevalência de SM e diabetes nesta população específica de doentes, comparando também definições. Métodos: Incluíram-se no estudo 300 indivíduos, com uma idade media de 64 ± 9 anos, 59% do género masculino, admitidos para angiografia coronária electiva, tendo sido excluídos os doentes com doença cardíaca previamente conhecida. Avaliou-se a prevalência de SM e de diabetes. Resultados: A prevalência ajustada de SM foi de 39,3% (critério NCEP-ATP III), 53,8% (critério IDF) e 48,4% (critério AHA/NHLBI). A prevalência ajustada de diabetes foi de 14,8% pela definição prévia da ADA e de 36.4% com a definição mais recente. A concordância global entre as definições de SM foi de 45,3%, sendo mais elevada entre as definições da AHA/NHLBI e da NCEP-ATP III (Kappa 0,821). A prevalência de SM está altamente dependente da idade em ambos os géneros, sendo mais prevalente no género feminino. A prevalência de diabetes é também dependente da idade, sendo semelhante em ambos os géneros. O componente de SM mais frequente é a hipertensão arterial, seguido pela obesidade abdominal, elevação da glicose, colesterol-HDL baixo e finalmente elevação dos triglicéridos. É também importante referir que 60% dos doentes estavam sob terapêutica hipolipemiante (56,6% com estatinas, 1,7% com fibratos e 1,7% com ambos). A diferença mais significativa entre géneros no que diz respeito aos componentes de SM é a elevada prevalência de obesidade abdominal no género feminino. Conclusões: Nesta população de alto risco, a prevalência de SM é elevada, sendo contudo a prevalência de diabetes semelhante à registada em estudos epidemiológicos na população geral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Chromosomally encoded AmpC β-lactamases may be acquired by transmissible plasmids which consequently can disseminate into bacteria lacking or poorly expressing a chromosomal bla AmpC gene. Nowadays, these plasmid-mediated AmpC β-lactamases are found in different bacterial species, namely Enterobacteriaceae, which typically do not express these types of β-lactamase such as Klebsiella spp. or Escherichia coli. This study was performed to characterize two E. coli isolates collected in two different Portuguese hospitals, both carrying a novel CMY-2-type β-lactamase-encoding gene. FINDINGS: Both isolates, INSRA1169 and INSRA3413, and their respective transformants, were non-susceptible to amoxicillin, amoxicillin plus clavulanic acid, cephalothin, cefoxitin, ceftazidime and cefotaxime, but susceptible to cefepime and imipenem, and presented evidence of synergy between cloxacilin and cefoxitin and/or ceftazidime. The genetic characterization of both isolates revealed the presence of bla CMY-46 and bla CMY-50 genes, respectively, and the following three resistance-encoding regions: a Citrobacter freundii chromosome-type structure encompassing a blc-sugE-bla CMY-2-type -ampR platform; a sul1-type class 1 integron with two antibiotic resistance gene cassettes (dfrA1 and aadA1); and a truncated mercury resistance operon. CONCLUSIONS: This study describes two new bla CMY-2-type genes in E. coli isolates, located within a C. freundii-derived fragment, which may suggest their mobilization through mobile genetic elements. The presence of the three different resistance regions in these isolates, with diverse genetic determinants of resistance and mobile elements, may further contribute to the emergence and spread of these genes, both at a chromosomal or/and plasmid level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The baseline susceptibility of primary HIV-2 to maraviroc (MVC) and other entry inhibitors is currently unknown. METHODS: The susceptibility of 19 HIV-2 isolates obtained from asymptomatic and AIDS patients and seven HIV-1 clinical isolates to the fusion inhibitors enfuvirtide (ENF) and T-1249, and to the coreceptor antagonists AMD3100, TAK-779 and MVC, was measured using a TZM-bl cell-based assay. The 50% inhibitory concentration (IC(50)), 90% inhibitory concentration (IC(90)) and dose-response curve slopes were determined for each drug. RESULTS: ENF and T-1249 were significantly less active on HIV-2 than on HIV-1 (211- and 2-fold, respectively). AMD3100 and TAK-779 inhibited HIV-2 and HIV-1 CXCR4 tropic (X4) and CCR5 tropic (R5) variants with similar IC(50) and IC(90) values. MVC, however, inhibited the replication of R5 HIV-2 variants with significantly higher IC(90) values (42.7 versus 9.7 nM; P<0.0001) and lower slope values (0.7 versus 1.3; P<0.0001) than HIV-1. HIV-2 R5 variants derived from AIDS patients were significantly less sensitive to MVC than variants from asymptomatic patients, this being inversely correlated with the absolute number of CD4(+) T-cells. CONCLUSIONS: T-1249 is a potent inhibitor of HIV-2 replication indicating that new fusion inhibitors might be useful to treat HIV-2 infection. Coreceptor antagonists TAK-779 and AMD3100 are also potent inhibitors of HIV-2 replication. The reduced sensitivity of R5 variants to MVC, especially in severely immunodeficient patients, indicates that the treatment of HIV-2-infected patients with MVC might require higher dosages than those used in HIV-1 patients, and should be adjusted to the disease stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a green methodology, 17 different poly(2-oxazolines) were synthesized starting from four different oxazoline monomers. The polymerization reactions were conducted in supercritical carbon dioxide under a cationic ring-opening polymerization (CROP) mechanism using boron trifluoride diethyl etherate as the catalyst. The obtained living polymers were then end-capped with different types of amines, in order to confer them antimicrobial activity. For comparison, four polyoxazolines were end-capped with water, and by their hydrolysis the linear poly(ethyleneimine) (LPEI) was also produced. After functionalization the obtained polymers were isolated, purified and characterized by standard techniques (FT-IR, NMR, MALDI-TOF and GPC). The synthesized poly(2-oxazolines) revealed an unusual intrinsic blue photoluminescence. High concentration of carbonyl groups in the polymer backbone is appointed as a key structural factor for the presence of fluorescence and enlarges polyoxazolines’ potential applications. Microbiological assays were also performed in order to evaluate their antimicrobial profile against gram-positive Staphylococcus aureus NCTC8325-4 and gram-negative Escherichia coli AB1157 strains, two well known and difficult to control pathogens. The minimum inhibitory concentrations (MIC)s and killing rates of three synthesized polymers against both strains were determined. The end-capping with N,N-dimethyldodecylamine of living poly(2- methyl-2-oxazoline) and poly(bisoxazoline) led to materials with higher MIC values but fast killing rates (less than 5 minutes to achieve 100% killing for both bacterial species) than LPEI, a polymer which had a lower MIC value, but took a longer time to kill both E.coli and S.aureus cells. LPEI achieved 100% killing after 45 minutes in contact with E. coli and after 4 hours in contact with S.aureus. Such huge differences in the biocidal behavior of the different polymers can possibly underlie different mechanisms of action. In the future, studies to elucidate the obtained data will be performed to better understand the killing mechanisms of the polymers through the use of microbial cell biology techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are biosynthetic polyesters, biodegradable and biocompatible making them of great interest for industrial purposes. The use of low value substrates with mixed microbial communities (MMC) is a strategy currently used to decrease the elevated PHA production costs. PHA production process requires an important step for selection and enrichment of PHA-storing microorganisms which is usually carried out in a Sequencing Batch Reactor (SBR). The aim of this study was to optimize the PHA accumulating culture selection stage using a 2-stage Continuous Stirrer Tank Reactor (CSTR) system. The system was composed by two separate feast and famine bioreactors operated continuously, mimicking the feast and famine phases in a SBR system. Acetate was used as carbon source and biomass seed was highly enriched in Plasticicumulans acidivorans obtained from activated sludge. The system was operated under two different sets of conditions (setup 1 and 2), maintaining a system total retention time of 12 hours and an OLR of 2.25 Cmmol/L.h-1. An average PHB-content of 3.3 % wt was obtained in setup 1 and 4.8% wt in setup 2. Several other experiments were performed in order to better understand the continuous system behaviour, using biomass from the continuous system. With the fed-batch experiment a maximum of 8.1% PHB was stored and the maximum substrate uptake and specific growth rates obtained in the growth experiment (1.15 Cmol Cmol-1.h-1 and 0.53 Cmol Cmol-1.h-1) were close to the ones from continuous system (1.12 Cmol Cmol-1.h-1 and 0.59 Cmol Cmol-1.h-1). The microbial community was characterized trough microscopic visualization, Denaturing Gradient Gel Electrophoresis (DGGE) analysis and Fluorescent in situ hybridization (FISH). The last studied performed mimicked the continuous system by building up a SBR system with all the same operational conditions while adding an extra acetate dosage during the 12 h cycle, simulating the substrate passing from the feast to the famine reactors under continuous operation. It was shown that possibly the continuous system was not able to efficiently select for PHB storing organisms under the operational conditions imposed, although the selected culture was capable of consuming the substrate and grow fast. This main conclusion might have resulted from two major factors affecting the system performance: the ammonium concentration in the Feast reactor and the amount of substrate leaching from the Feast to the Famine reactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Metabolic syndrome (MetS), a risk factor for atherosclerosis and coronary heart disease, is related to an inadequate food intake pattern. Its incidence is increasing among Brazilian adults, including those living in rural areas. Our aim was not only to describe the frequency of MetS in adults with or without MetS but also to compare their food intake pattern as assessed by the healthy eating index (HEI) and serum albumin and C reactive protein (CRP) levels. METHODS: Men and women (n = 246) living in a small village in Brazil were included. MetS was characterized according to the adult treatment panel (ATP III) criteria. Groups were compared by chi-square, student t or Mann-Whitney tests. RESULTS: MetS was diagnosed in 15.4% of the cases. The MetS group showed higher CRP (1.8±1.2 vs. 1.0±0.9 mg/dl) and lower albumin (4.3±0.3 vs. 4.4±0.3 g/dl) serum levels compared to the control group. Additionally, the MetS group showed lower scores (median[range]) in the HEI compared to the control group (53.5[31.2-78.1] vs 58[29.7-89.5], respectively). The MetS group also had decreased scores for total fat and daily variety of food intake. CONCLUSIONS: The results suggest that adults with MetS displayed chronic mild inflammation and a poorer food intake pattern than the control group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Succinic acid (SA) is a highly versatile building block that is used in a wide range of industrial applications. The biological production of succinic acid has emerged in the last years as an efficient alternative to the chemical production based on fossil fuels. However, in order to fully replace the competing petro-based chemical process from which it has been produced so far, some challenges remain to be surpassed. In particular, one main obstacle would be to reduce its production costs, mostly associated to the use of refined sugars. The present work is focused on the development of a sustainable and cost-e↵ective microbial production process based on cheap and renewable resources, such as agroindustrial wastes. Hence, glycerol and carob pods were identified as promising feedstocks and used as inexpensive carbon sources for the bioproduction of succinic acid by Actinobacillus succinogenes 130Z, one of the best naturally producing strains. Even though glycerol is a highly available carbon source, as by-product of biodiesel production, its consumption by A. succinogenes is impaired due to a redox imbalance during cell growth. However, the use of an external electron acceptor such as dimethylsulfoxide (DMSO) may improve glycerol metabolism and succinic acid production by this strain. As such, DMSO was tested as a co-substrate for glycerol consumption and concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by this biocatalyst. Aiming at obtaining higher succinic acid yield and production rate, batch and fed-batch experiments were performed under controlled cultivation conditions. Batch experiments resulted in a succinic acid yield on glycerol of 0.95 g SA/g GLY and a production rate of 2.13 g/L.h, with residual production of acetic and formic acids. In fed-batch experiment, the SA production rate reached 2.31 g/L.h, the highest value reported in the literature for A. succinogenes using glycerol as carbon source. DMSO dramatically improved the conversion of glycerol by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Carob pods, highly available in Portugal as a residue from the locust bean gum industry, contain a significant amount of fermentable sugars such as sucrose, glucose and fructose and were also used as substrate for succinic acid production. Sugar extraction from raw and roasted carobs was optimized varying solid/water ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Kinetic studies of glucose, fructose and sucrose consumption by A. succinogenes as individual carbon sources till 30 g/L were first determined to assess possible metabolic diferences. Results showed no significant diferences related to sugar consumption and SA production between the diferent sugars. Carob pods water extracts were then used as carbon source during controlled batch cultivations. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal degradation upon melting is one of the major drawbacks reported for polyhydroxyalkanoates (PHA). However, the role of residues originating from the fermentation and the extraction steps on the thermal stability of this class of biopolymers still needs to be clarified. In the particular case of PHA produced from mixed microbial cultures (MMC), this topic is even less documented in the literature. Here, two polyhydroxy(butyrate-co-valerate) (PHBV) produced from MMC enriched in PHA accumulating organisms and fed with cheese whey were studied. A micro extrusion line is used to produce filaments and assess the processability and the degradation of processed PHBV. The prototype micro extrusion line allows for studying grams of materials. The two PHBV contain 18 mol% HV. PHBV was recovered with 11 wt% residues, and further submitted to a purification procedure resulting in a second biopolyester containing less than 2 wt% impurities. The thermorheological characterization of the two PHBV is first presented, together with their semicrystalline properties. Then the processing windows of the two biopolyesters are presented. Finally, the properties of extruded filaments are reported and the thermomechanical degradation of PHBV is extensively studied. The structure was assessed by wide angle X-ray diffraction, mechanical and rheological properties are reported, thermal properties are studied with differential scanning calorimetry and thermogravimetric analysis, whereas Fourier Transform Infrared spectroscopy was used to assess the impact of the extrusion on PHBV chemical structure. All results obtained with the two PHBV are compared to assess the effects of residues on both PHBV processability and degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the biochemical and nutritional status of smokers in treatment for smoking cessation and its association with anthropometric parameters. METHODS: This is a cross-sectional study with convenience sample. Adult smokers were assessed at the start of treatment in the Interdisciplinary Center for Tobacco Research and Intervention of the University Hospital of the Federal University of Juiz de Fora (CIPIT/HU-UFJF). We evaluated the body mass index (BMI), conicity index (CI); waist circumference (WC), percentage of body fat (%BF), fasting glycemia, cortisol, insulin, total cholesterol (TC), LDL-c, HDL-c, triglycerides (TG) and metabolic syndrome (MS). RESULTS: Most participants (52.2%) had MS and high cardiovascular risk. The fasting glycemia was abnormal in 30.4%. There was a significant positive correlation between BMI and WC (r = 0.90; p = 0.0001), %BF (r = 0.79; p = 0.0001), CI (r = 0.65; p = 0.0001), glycemia (r = 0.42; p = 0.04) and TG (r = 0.47; p = 0.002). The CI presented positive correction with insulin (r = 0.60; p = 0.001), glycemia (r = 0.55; p = 0.007), TG (r = 0.54; p = 0.008) and %BF (r = 0.43; p = 0.004). Patients with longer duration of smoking had a higher risk of developing MS (OR = 9.6, p = 0.016). CONCLUSION: The smokers evaluated had increased risk for developing MS, especially those with longer duration of smoking, requiring urgent smoking cessation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.