992 resultados para MHC II
Resumo:
The structures of diaqua(1,7-dioxa-4-thia-10-azacyclododecane)nickel dinitrate, [Ni(C8H17NO2S)(H2O)(2)](NO3)(2), (I), bis(nitrato-O,O')(1,4,7-trioxa-10-azacyclododecane)mercury, [Hg(NO3)(2)(C8H17NO3)], (II), and aqua(nitrato-O)(1-oxa-4,7,10-triazacyclododecane)copper nitrate, [Cu(NO3)(C8H19N3O)(H2O)]NO3, (III), reveal each macrocycle binding in a tetradentate manner. The conformations of the ligands in (I) and (III) are the same and distinct from that identified for (II). These differences are in agreement with molecular-mechanics predictions of ligand conformation as a function of metal-ion size.
Resumo:
Viruses that establish a persistent infection with their host have evolved numerous strategies to evade the immune system. Consequently, they are useful tools to dissect the complex cellular processes that comprise the immune response. Rapid progress has been made in recent years in defining the role of cellular MHC class I molecules in regulating the response of natural killer (NK) cells. Concomitantly, the roles of the MHC class I homologues encoded by human and mouse cytomegaloviruses in evading or subverting NK cell responses has received considerable interest. This review discusses the results from a number of studies that have pursued the biological function of the viral MHC class I homologues. Based on the evidence from these studies, hypotheses for the possible role of these intriguing molecules are presented. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
The title pendent-arm macrocyclic hexaamine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous Ni-II and Zn-II complexes (both as perchlorate salts), namely (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)nickel(II) diperchlorate, [Ni(C12H30N6)](ClO4)(2), and (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)zinc(II) diperchlorate, [Zn(C-12 H30N6)](ClO4)(2). Distortion of the N-M-N valence angles from their ideal octahedral values becomes more pronounced with increasing metal-ion size and the present results are compared with other structures of this ligand.
Resumo:
Dendritic cells (DC) are considered to be the major cell type responsible for induction of primary immune responses. While they have been shown to play a critical role in eliciting allosensitization via the direct pathway, there is evidence that maturational and/or activational heterogeneity between DC in different donor organs may be crucial to allograft outcome. Despite such an important perceived role for DC, no accurate estimates of their number in commonly transplanted organs have been reported. Therefore, leukocytes and DC were visualized and enumerated in cryostat sections of normal mouse (C57BL/10, B10.BR, C3H) liver, heart, kidney and pancreas by immunohistochemistry (CD45 and MHC class II staining, respectively). Total immunopositive cell number and MHC class II+ cell density (C57BL/10 mice only) were estimated using established morphometric techniques - the fractionator and disector principles, respectively. Liver contained considerably more leukocytes (similar to 5-20 x 10(6)) and DC (similar to 1-3 x 10(6)) than the other organs examined (pancreas: similar to 0.6 x 10(6) and similar to 0.35 x 10(6): heart: similar to 0.8 x 10(6) and similar to 0.4 x 10(6); kidney similar to 1.2 x 10(6) and 0.65 x 10(6), respectively). In liver, DC comprised a lower proportion of all leukocytes (similar to 15-25%) than in the other parenchymal organs examined (similar to 40-60%). Comparatively, DC density in C57BL/10 mice was heart > kidney > pancreas much greater than liver (similar to 6.6 x 10(6), 5 x 10(6), 4.5 x 10(6) and 1.1 x 10(6) cells/cm(3), respectively). When compared to previously published data on allograft survival, the results indicate that the absolute number of MHC class II+ DC present in a donor organ is a poor predictor of graft outcome. Survival of solid organ allografts is more closely related to the density of the donor DC network within the graft. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Chimeric papillomavirus (PV) virus-like particles (VLPs) based on the bovine papillomavirus type 1 (BPV-1) L1 protein were constructed by replacing the 23-carboxyl-terminal amino acids of the BPV1 major protein L1 with an artificial polytope minigene, containing known CTL epitopes of human PV16 E7 protein, HIV IIIB gp120 P18, Nef, and reverse transcriptase (RT) proteins, and an HPV16 E7 linear B epitope. The CTL epitopes were restricted by three different MHC class 1 alleles (H-2(b), H-2(d), HLA-A*0201). The chimeric L1 protein assembled into VLPs when expressed in SF-9 cells by recombinant baculovirus. After immunization of mice with polytope VLPs in the absence of adjuvant, serum antibodies were detected which reacted with both polytope VLPs and wild-type BPV1L1 VLPs, in addition to the HPV16E7 linear B cell epitope. CTL precursors specific for the HPV16 E7, HIV P18, and RT CTL epitopes were also detected in the spleen of immunized mice. Polytope VLPs can thus deliver multiple B and T epitopes as immunogens to the MHC class I and class II pathways, extending the utility of VLPs as self-adjuvanting immunogen delivery systems. (C) 2000 Academic Press.
Resumo:
Retention of green leaf area at maturity (GLAM), known as stay-green, is used as an indicator of postanthesis drought resistance in sorghum [Sorghum bicolor (L.) Moench] breeding programs in the USA and Australia. The critical issue is whether maintaining green leaves under postanthesis drought increases grain yield in stay-green compared with senescent hybrids. Field studies were undertaken in northeastern Australia on a cracking and self-mulching gay clay. Nine closely related hybrids varying in rate of leaf senescence were grown under two water-limiting regimes, post-flowering water deficit and terminal (pre- and postflowering) water deficit, and a fully irrigated control. Under terminal water deficit, grain yield tvas correlated positively with GLAM (r = 0.75**) and negatively with rate of leaf senescence (r = -0.74**). Grain yield also increased by approximate to 0.35 Mg ha(-1) for every day that onset of leaf senescence was delayed beyond 76 DAE in the water-limited treatments. Stay-green hybrids produced 47% more postanthesis biomass than their senescent counterparts (920 vs. 624 g m(-2)) under the terminal water deficit regime. No differences in grain yield were found among eight of the nine hybrids under fully irrigated conditions, suggesting that the stay-green trait did not constrain yield in the well-watered control. The results indicate that sorghum hybrids possessing the stay-green trait have a significant yield advantage under postanthesis drought compared with hybrids not possessing this trait.
Resumo:
Familial hyperaldosteronism type II (FH-II) is caused by adrenocortical hyperplasia or aldosteronoma or both and is frequently transmitted in an autosomal dominant fashion. Unlike FH type I (FI-I-I), which results from fusion of the CYP11B1 and CYP11B2 genes, hyperaldosteronism in FH-II is not glucocorticoid remediable. A large family with FH-II was used for a genome wide search and its members were evaluated by measuring the aldosterone:renin ratio. In those with an increased ratio, FH-II was confirmed by fludrocortisone suppression testing. After excluding most of the genome, genetic linkage was identified with a maximum two point lod score of 3.26 at theta =0, between FH-II in this family and the polymorphic markers D7S511, D7S517, and GATA24F03 on chromosome 7,a region that corresponds to cytogenetic band 7p22. This is the first identified locus for FH-II; its molecular elucidation may provide further insight into the aetiology of primary aldosteronism.
Resumo:
P-II is a signal transduction protein that is part of the cellular machinery used by many bacteria to regulate the activity of glutamine synthetase and the transcription of its gene. The structure of P-II was solved using a hexagonal crystal form (form I). The more physiologically relevant form of P-II is a complex with small molecule effecters. We describe the structure of P-II with ATP obtained by analysis of two different crystal forms (forms II and III) that were obtained by co-crystallization of P-II with ATP. Both structures have a disordered recognition (T) loop and show differences at their C termini. Comparison of these structures with the form I protein reveals changes that occur on binding ATP. Surprisingly, the structure of the P-II/ATP complex differs with that of GlnK, a functional homologue. The two proteins bind the base and sugar of ATP in a similar manner but show differences in the way that they interact with the phosphates. The differences in structure could account for the differences in their activities, and these have been attributed to a difference in sequence at position 82. It has been demonstrated recently that P-II and GlnK form functional heterotrimers in vivo. We construct models of the heterotrimers and examine the junction between the subunits.
Resumo:
The reactions of mercury(II) with the mixed donor encapsulating ligands 3,6,16-trithia-6,11,19-triazabicyclo[6.6.6]icosane (AMN(3)S(3)sar) and 1-amino-8-methyl-6,19-dithia-3,10,13,16-tetraazabicyclo[6.6.6]icosane (AMN(4)S(2)sar) have been studied. NMR ligand-ligand competition experiments with the ligands 1,4,8,11-tetraazaeyclotetradecane ([14]aneN(4)), 1-thia-4,7,10-triazacyclododecane ([12]aneN(3)S) and ethylenediaminetetraacetic acid (EDTA) with AMN(3)S(3)sar and Hg(II) indicated that [14]aneN(4) would be an appropriate competing ligand for the, determination of the Hg(II) stability constant. Calculations indicated the ratio of concentrations of AMN3S3sar, [14]aneN(4) and Hg(II) required for the determination of the stability constant ranged from 1:1:1 to 1:5:1. Refinement of the titration curves yielded log(10)K[Hg(AMN(3)S(3)sar)](2+) = 17.7. A similar competition titration resulted in the determination of the stability constant for the AMN(4)S(2)sar system as log(10)K[Hg(AMN(4)S(2)sar)](2+) = 19.5. The observed binding constants for the mixed N/S donor systems and the hexaaza analogues sar (3,6,10,13,16,19-hexaazabicyclo [6.6.6]icosane) and diamsar (1,8-diamino-3,6,10,13,16,19 -hexazabicyclo [6.6.6] icosane (log(10)K-[Hg(diamsar)](2+) = 26.4; log(10)K[Hg(sar)](2+) = 28.1) differ by approximately ten orders of magnitude. The difference is ascribed not to a cryptate effect but to a mismatch in the Hg-N and Hg-S bond lengths in the N/S systems.
Resumo:
We present a photometric investigation of the variation in galaxy colour with environment in 11 X-ray-luminous clusters at 0.07 less than or equal to z less than or equal to 0.16 taken from the Las Campanas/AAT Rich Cluster Survey. We study the properties of the galaxy populations in individual clusters, and take advantage of the homogeneity of the sample to combine the clusters together to investigate weaker trends in the composite sample. We find that modal colours of galaxies lying on the colour-magnitude relation in the clusters become bluer by d(B - R)/dr(p) = -0.022 +/- 0.004 from the cluster core out to a projected radius of r(p) = 6 Mpc, further out in radius than any previous study. We also examine the variation in modal galaxy colour with local galaxy density, 2, for galaxies lying close to the colour-magnitude relation, and find that the median colour shifts bluewards by d(B - R)/d log(10)(Sigma) = -0.076 +/- 0.009 with decreasing local density across three orders of magnitude. We show that the position of the red envelope of galaxies in the colour-magnitude relation does not vary as a function of projected radius or density within the clusters, suggesting that the change in the modal colour results from an increasing fraction of bluer galaxies within the colour-magnitude relation, rather than a change in the colours of the whole population. We show that this shift in the colour-magnitude relations with projected radius and local density is greater than that expected from the changing morphological mix based on the local morphology-density relation. We therefore conclude that we are seeing a real change in the properties of galaxies on the colour-magnitude relation in the outskirts of clusters. The simplest interpretation of this result (and similar constraints in local clusters) is that an increasing fraction of galaxies in the lower density regions at large radii within clusters exhibit signatures of star formation in the recent past, signatures which are not seen in the evolved galaxies in the highest density regions.
Resumo:
Background: A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods. Materials and Methods: We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs. Results: The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides. Conclusion: The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.
Resumo:
Ecological interface design (EID) is proving to be a promising approach to the design of interfaces for complex dynamic systems. Although the principles of EID and examples of its effective use are widely available, few readily available examples exist of how the individual displays that constitute an ecological interface are developed. This paper presents the semantic mapping process within EID in the context of prior theoretical work in this area. The semantic mapping process that was used in developing an ecological interface for the Pasteurizer II microworld is outlined, and the results of an evaluation of the ecological interface against a more conventional interface are briefly presented. Subjective reports indicate features of the ecological interface that made it particularly valuable for participants. Finally, we outline the steps of an analytic process for using EID. The findings presented here can be applied in the design of ecological interfaces or of configural displays for dynamic processes.
Resumo:
Homologues of MHC class I proteins have been identified in the genomes of human, murine and rat cytomegaloviruses (CMVs). Given the pivotal role of the MHC class I protein in cellular immunity, it has been postulated that the viral homologues subvert the normal antiviral immune response of the host, thus promoting virus replication and dissemination in an otherwise hostile environment. This review focuses on recent studies of the CMV MHC class I homologues at the molecular, cellular and whole animal level and presents current hypotheses for their roles in the CMV life cycle.