944 resultados para METASTATIC RETINOBLASTOMA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle-mediated (gene gun) in vivo delivery of the murine interleukin 12 (IL-12) gene in an expression plasmid was evaluated for antitumor activity. Transfer of IL-12 cDNA into epidermal cells overlying an implanted intradermal tumor resulted in detectable levels (266.0 +/- 27.8 pg) of the transgenic protein at the skin tissue treatment site. Despite these low levels of transgenic IL-12, complete regression of established tumors (0.4-0.8 cm in diameter) was achieved in mice bearing Renca, MethA, SA-1, or L5178Y syngeneic tumors. Only one to four treatments with IL-12 cDNA-coated particles, starting on day 7 after tumor cell implantation, were required to achieve complete tumor regression. This antitumor effect was CD8+ T cell-dependent and led to the generation of tumor-specific immunological memory. By using a metastatic P815 tumor model, we further showed that a delivery of IL-12 cDNA into the skin overlying an advanced intradermal tumor, followed by tumor excision and three additional IL-12 gene transfections, could significantly inhibit systemic metastases, resulting in extended survival of test mice. These results suggest that gene gun-mediated in vivo delivery of IL-12 cDNA should be further developed for potential clinical testing as an approach for human cancer gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein kinase inhibitor staurosporine has been shown to induce G1 phase arrest in normal cells but not in most transformed cells. Staurosporine did not induce G1 phase arrest in the bladder carcinoma cell line 5637 that lacks a functional retinoblastoma protein (pRB-). However, when infected with a pRB-expressing retrovirus [Goodrich, D. W., Chen, Y., Scully, P. & Lee, W.-H. (1992) Cancer Res. 52, 1968-1973], these cells, now pRB+, were arrested by staurosporine in G1 phase. This arrest was accompanied by the accumulation of hypophosphorylated pRB. In both the pRB+ and pRB- cells, cyclin D1-associated kinase activities were reduced on staurosporine treatment. In contrast, cyclin-dependent kinase (CDK) 2 and cyclin E/CDK2 activities were inhibited only in pRB+ cells. Staurosporine treatment did not cause reductions in the protein levels of CDK4, cyclin D1, CDK2, or cyclin E. The CDK inhibitor proteins p21(Waf1/Cip1) and p27 (Kip1) levels increased in staurosporine-treated cells. Immunoprecipitation of CDK2, cyclin E, and p2l from staurosporine-treated pRB+ cells revealed a 2.5- to 3-fold higher ratio of p2l bound to CDK2 compared with staurosporine-treated pRB- cells. In pRB+ cells, p2l was preferentially associated with Thrl6O phosphorylated active CDK2. In pRB- cells, however, p2l was bound preferentially to the unphosphorylated, inactive form of CDK2 even though the phosphorylated form was abundant. This is the first evidence suggesting that G1 arrest by 4 nM staurosporine is dependent on a functional pRB protein. Cell cycle arrest at the pRB- dependent checkpoint may prevent activation of cyclin E/CDK2 by stabilizing its interaction with inhibitor proteins p2l and p27.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human Rb2/p130 gene shares many structural and functional features with the retinoblastoma gene and the retinoblastoma-related p107 gene. In the present study, we have cloned and partially sequenced the gene coding for the Rb2/p130 protein from human genomic libraries. The complete intron-exon organization of this gene has been elucidated. The gene contains 22 exons spanning over 50 kb of genomic DNA. The length of individual exons ranges from 65 to 1517 bp. The largest intron spans over 9 kb, and the smallest has only 82 bp. The 5' flanking region revealed a structural organization characteristic of promoters of "housekeeping" and growth control-related genes. A typical TATA or CAAT box is not present, but there are several GC boxes and potential binding sites for numerous transcription factors. This study provides the molecular basis for understanding the transcriptional control of the Rb2/p130 gene and for implementing a comprehensive Rb2/p130 mutation screen using genomic DNA as a template.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p107 is a retinoblastoma protein-related phosphoprotein that, when overproduced, displays a growth inhibitory function. It interacts with and modulates the activity of the transcription factor, E2F-4. In addition, p107 physically associates with cyclin E-CDK2 and cyclin A-CDK2 complexes in late G1 and at G1/S, respectively, an indication that cyclin-dependent kinase complexes may regulate, contribute to, and/or benefit from p107 function during the cell cycle. Our results show that p107 phosphorylation begins in mid G1 and proceeds through late G1 and S and that cyclin D-associated kinase(s) contributes to this process. In addition, E2F-4 binds selectively to hypophosphorylated p107, and G1 cyclin-dependent p107 phosphorylation leads to the dissociation of p107-E2F-4 complexes as well as inactivation of p107 G1 blocking function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyl radical damage in metastatic tumor DNA was elucidated in women with breast cancer, and a comparison was made with nonmetastatic tumor DNA. The damage was identified by using statistical models of modified base and Fourier transform-infrared spectral data. The modified base models revealed a greater than 2-fold increase in hydroxyl radical damage in the metastatic tumor DNA compared with the nonmetastatic tumor DNA. The metastatic tumor DNA also exhibited substantially greater base diversity than the nonmetastatic DNA, and a progression of radical-induced base damage was found to be associated with the growth of metastatic tumors. A three-dimensional plot of principal components from factor analysis, derived from infrared spectral data, also showed that the metastatic tumor DNA was substantially more diverse than the tightly grouped nonmetastatic tumor DNA. These cohesive, independently derived findings suggest that the hydroxyl radical generates DNA phenotypes with various metastatic potentials that likely contribute to the diverse physiological properties and heterogeneity characteristic of metastatic cell populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological function of the retinoblastoma protein (RB) in the cell division cycle has been extensively documented, but its apparent role in differentiation remains largely unexplored. To investigate how RB is involved in differentiation, the U937 large-cell lymphoma line was induced to differentiate along a monocyte/macrophage lineage. During differentiation RB was found to interact directly through its simian virus 40 large tumor antigen (T antigen)-binding domain with NF-IL6, a member of the CAAT/enhancer-binding protein (C/EBP) family of transcription factors. NF-IL6 utilizes two distinct regions to bind to the hypophosphorylated form of RB in vitro and in cells. Wild-type but not mutant RB enhanced both binding activity of NF-IL6 to its cognate DNA sequences in vitro and promoter transactivation by NF-IL6 in cells. These findings indicate a novel biochemical function of RB: it activates, by an apparent chaperone-like activity, specific transcription factors important for differentiation. This contrasts with its sequestration and inactivation of other transcription factors, such as E2F-1, which promote progression of the cell cycle. Such disparate mechanisms may help to explain the dual role of RB in cell differentiation and the cell division cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intact T/E1A-binding domain (the pocket) is necessary, but not sufficient, for the retinoblastoma protein (RB) to bind to DNA-protein complexes containing E2F and for RB to induce a G1/S block. Indirect evidence suggests that the binding of RB to E2F may, in addition to inhibiting E2F transactivation function, generate a complex capable of functioning as a transrepressor. Here we show that a chimera in which the E2F1 transactivation domain was replaced with the RB pocket could, in a DNA-binding and pocket-dependent manner, mimic the ability of RB to repress transcription and induce a cell cycle arrest. In contrast, a transdominant negative E2F1 mutant that is capable of blocking E2F-dependent transactivation did not. Fusion of the RB pocket to a heterologous DNA-binding domain unrelated to E2F likewise generated a transrepressor protein when scored against a suitable reporter. These results suggest that growth suppression by RB is due, at least in part, to transrepression mediated by the pocket domain bound to certain promoters via E2F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which insulin-like growth factors (IGFs) can be both mitogenic and differentiation-promoting in skeletal myoblasts are unclear because these two processes are believed to be mutually exclusive in this tissue. The phosphorylation state of the ubiquitous nuclear retinoblastoma protein (Rb) plays an important role in determining whether myoblasts proliferate or differentiate: Phosphorylated Rb promotes mitogenesis, whereas un- (or hypo-) phosphorylated Rb promotes cell cycle exit and differentiation. We hypothesized that IGFs might affect the fate of myoblasts by regulating the phosphorylation of Rb. Although long-term IGF treatment is known to stimulate differentiation, we find that IGFs act initially to inhibit differentiation and are exclusively mitogenic. These early effects of IGFs are associated with maintenance of Rb phosphorylation typical of proliferating cells; upregulation of the gene expression of cyclin-dependent kinase 4 and cyclin D1, components of a holoenzyme that plays a principal role in mediating Rb phosphorylation; and marked inhibition of the gene expression of myogenin, a member of the MyoD family of skeletal muscle-specific transcription factors that is essential in muscle differentiation. We also find that IGF-induced inhibition of differentiation occurs through a process that is independent of its mitogenic effects. We demonstrate, thus, that IGFs regulate Rb phosphorylation and cyclin D1 and cyclin-dependent kinase 4 gene expression; together with their biphasic effects on myogenin expression, these results suggest a mechanism by which IGFs are initially mitogenic and subsequently differentiation-promoting in skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth inhibition assays indicated that the IC50 values for methotrexate (MTX) and 5-fluorodeoxyuridine (FdUrd) in HS-18, a liposarcoma cell line lacking retinoblastoma protein (pRB), and SaOS-2, an osteosarcoma cell line with a truncated and nonfunctional pRB, were 10- to 12-fold and 4- to 11-fold higher, respectively, than for the HT-1080 (fibrosarcoma) cell line, which has wild-type pRB. These Rb-/- cell lines exhibited a 2- to 4-fold increase in both dihydrofolate reductase (DHFR) and thymidylate synthase (TS) enzyme activities as well as a 3- to 4-fold increase in mRNA levels for these enzymes compared to the HT-1080 (Rb+/+) cells. This increase in expression was not due to amplification of the DHFR and TS genes. Growth inhibition by MTX and FdUrd was increased and DHFR and TS activities and expression were correspondingly decreased in Rb transfectants of SaOS-2 cells. In contrast, there was no significant difference in growth inhibition among these cell lines for the nonantimetabolites VP-16, cisplatin, and doxorubicin. A gel mobility-shift assay showed that parental SaOS-2 cells had increased levels of free E2F compared to the Rb-reconstituted SaOS-2 cells. These results indicate that pRB defective cells may have decreased sensitivity to growth inhibition by target enzymes encoded by genes whose transcription is enhanced by E2F proteins and suggest mechanisms of interaction between cytotoxic agents and genes involved in cell cycle progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-damaging agents induce accumulation of the tumor suppressor and G1 checkpoint protein p53, leading cells to either growth arrest in G1 or apoptosis (programmed cell death). The p53-dependent G1 arrest involves induction of p21 (also called WAF1/CIP1/SDI1), which prevents cyclin kinase-mediated phosphorylation of retinoblastoma protein (RB). Recent studies suggest a p53-independent G1 checkpoint as well; however, little is known about its molecular mechanisms. We report that induction of a protein-serine/threonine phosphatase activity by DNA damage signals is at least one of the mechanisms responsible for p53-independent, RB-mediated G1 arrest and consequent apoptosis. When two p53-null human leukemic cell lines (HL-60 and U-937) were treated with a variety of anticancer agents, RB became hypophosphorylated, accompanied with G1 arrest. This was followed immediately (in less than 30 min) by apoptosis, as determined by the accumulation of pre-G1 apoptotic cells and the internucleosomal fragmentation of DNA. Addition of calyculin A or okadaic acid (specific serine/threonine phosphatase inhibitors) or zinc chloride (apoptosis inhibitor) prevented the G1 arrest- and apoptosis-specific RB dephosphorylation. The levels of cyclin E- and cyclin A-associated kinase activities remained high during RB dephosphorylation, supporting the involvement of a chemotherapy-induced serine/threonine phosphatase(s) rather than p21. Furthermore, the induced phosphatase activity coimmunoprecipitated with the hyperphosphorylated RB and was active in a cell-free system that reproduced the growth arrest- and apoptosis-specific RB dephosphorylation, which was inhibitable by calyculin A but not zinc. We propose that the RB phosphatase(s) might be one of the p53-independent G1 checkpoint regulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p16ink4 has been implicated as a tumor suppressor that is lost from a variety of human tumors and human cell lines. p16ink4 specifically binds and inhibits the cyclin-dependent kinases 4 and 6. In vitro, these kinases can phosphorylate the product of the retinoblastoma tumor suppressor gene. Thus, p16ink4 could exert its function as tumor suppressor through inhibition of phosphorylation and functional inactivation of the retinoblastoma protein. Here we show that overexpression of p16ink4 in certain cell types will lead to an arrest in the G1 phase of the cell cycle. In addition, we show that p16ink4 can only suppress the growth of human cells that contain functional pRB. Moreover, we have compared the effect of p16ink4 expression on embryo fibroblasts from wild-type and RB homozygous mutant mice. Wild-type embryo fibroblasts are inhibited by p16ink4, whereas the RB nullizygous fibroblasts are not. These data not only show that the presence of pRB is crucial for growth suppression by p16ink4 but also indicate that the pRB is the critical target acted upon by cyclin D-dependent kinases in the G1 phase of the cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinoblastoma susceptibility gene (Rb) participates in controlling the G1/S-phase transition, presumably by binding and inactivating E2F transcription activator family members. Mouse embryonic fibroblasts (MEFs) with no, one, or two inactivated Rb genes were used to determine the specific contributions of Rb protein to cell cycle progression and gene expression. MEFs lacking both Rb alleles (Rb-/-) entered S phase in the presence of the dihydrofolate reductase inhibitor methotrexate. Two E2F target genes, dihydrofolate reductase and thymidylate synthase, displayed elevated mRNA and protein levels in Rb- MEFs. Since absence of functional Rb protein in MEFs is sufficient for S-phase entry under growth-limiting conditions, these data indicate that the E2F complexes containing Rb protein, and not the Rb-related proteins p107 and p130, may be rate limiting for the G1/S transition. Antineoplastic drugs caused accumulation of p53 in the nuclei of both Rb+/+ and Rb-/- MEFs. While p53 induction led to apoptosis in Rb-/- MEFs, Rb+/- and Rb+/+ MEFs underwent cell cycle arrest without apoptosis. These results reveal that diverse growth signals work through Rb to regulate entry into S phase, and they indicate that absence of Rb protein produces a constitutive DNA replication signal capable of activating a p53-associated apoptotic response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinoblastoma (RB) gene specifies a nuclear phosphoprotein (pRb 105), which is a prototype tumor suppressor inactivated in a variety of human tumors. Recent studies suggest that RB is also involved in embryonic development of murine central nervous and hematopoietic systems. We have investigated RB expression and function in human adult hematopoiesis--i.e., in liquid suspension culture of purified quiescent hematopoietic progenitor cells (HPCs) induced by growth factor stimulus to proliferation and unilinage differentiation/maturation through the erythroid or granulocytic lineage. In the initial HPC differentiation stages, the RB gene is gradually induced at the mRNA and protein level in both erythroid and granulopoietic cultures. In late HPC differentiation and then precursor maturation, RB gene expression is sustained in the erythroid lineage, whereas it is sharply downmodulated in the granulocytic series. Functional studies were performed by treatment of HPC differentiation culture with phosphorothioate antisense oligomer targeting Rb mRNA; coherent with the expression pattern, oligomer treatment of late HPCs causes a dose-dependent and selective inhibition of erythroid colony formation. These observations suggest that the RB gene plays an erythroid- and stage-specific functional role in normal adult hematopoiesis, particularly at the level of late erythroid HPCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexamethylenebisacetamide-induced terminal differentiation of Friend virus-transformed murine erythroleukemia (MEL) cells can be inhibited by okadaic acid, an inhibitor of type 1 and type 2A protein phosphatases. The inhibition is shown to be correlated with prevention of dephosphorylation of retinoblastoma protein (pRB) in cells and bypass of G1 prolongation in the cell cycle. These results suggest that pRB-mediated G1 prolongation is necessary for MEL cells to commit to terminal differentiation. However, further experiments demonstrate that the simple cell cycle exit is not sufficient for commitment to terminal differentiation. Induction of dephosphorylation of pRB and subsequent G1 prolongation by forskolin does not lead MEL cells to differentiate. Additional pRB has been expressed in MEL cells by transfection with a neo-resistant plasmid containing RB cDNA under the control of a cytomegalovirus promoter. Exogenously expressed pRB is hyperphosphorylated in logarithmically growing MEL cells without any noticeable change in growth rate between the transfected cell line and the parental cell line. This result suggests that pRB in MEL cells is regulated by protein kinases and protein phosphatases and not by transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinoblastoma protein (Rb) is a target of viral oncoproteins. To explore the hypothesis that viral proteins may be structural mimics of cellular proteins, we have searched cDNA libraries for Rb-binding proteins. We report here the cloning of a cDNA for the protein RIZ from rat and human cells. RIZ is a 250-kDa nuclear protein containing eight zinc-finger motifs. It contains an Rb-binding motif that shares an antigenic epitope with the C terminus of E1A. A domain is conserved between RIZ and the PRDI-BF1/Blimp-1 differentiation factor. Other motifs of RIZ include putative GTPase and SH3 (src homology domain 3) domains. RIZ is preferentially expressed in both adult and embryonic rat neuroendocrine tissues. It is also expressed in human retinoblastoma cells and at low levels in all other human cell lines examined. While the function of RIZ is not yet clear, its structure and pattern of expression suggest a role for RIZ in transcriptional regulation during neuronal differentiation and pathogenesis of retinoblastoma.