953 resultados para MERCURY LAMP
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method for the attachment of 2-mercaptothiazoline (MTZ) to modified silica gel has been developed. In the first step, a new silylant agent was synthesized, named SiMTZ, by the reaction between MTZ molecule and chloropropyltrimethoxysilane (SiCl). SiMTZ and tetraethylortosilicate were co-condensed in the presence of n-dodecylamine, a neutral surfactant template, to produce a modified ordered hexagonal mesoporous silica named HMTZ. The modified material contained 0.89 +/- 0.03 mmol of 2-mercaptothiazoline per gram of silica. FT-IR, FT-Raman, Si-29- and C-13-NMR spectra were in agreement with the proposed structure of the modified mesoporous silica in the solid state. HMTZ material has been used for divalent mercury adsorption from aqueous solution at 298 I K. The series of adsorption isotherms were adjusted to a modified Langmuir equation. The maximum number of moles of mercury adsorbed gave 2.34 +/- 0.09 mmol/g of material. The same interaction was followed by calorimetric titration on an isoperibol calorimeter. The HMTZ presented a high capacity for the removal of the contaminant mercury from water. The Delta H and Delta G values for the interaction were determined to be -56.34 +/- 1.07 and -2.14 +/- 0.11 kJ mol(-1). This interaction process was accompanied by a decrease of entropy value (- 182 J mol(-1) K-1). Thus, the interaction between mercury and HMTZ resulted in a spontaneous thermodynamic system with a high favorable exothermic enthalpic effect. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazole (DTTPSG-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L-1 KNO3; nu=20 mV s(-1)) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG-CPE. The anodic wave peak at 0.31 V is well-defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg (L)-(1) Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.
Resumo:
This work has as objective to develop an interesting research line in the Optical Instrumentation area, that is to associate the Optical Design to the Ophthalmology area. The purpose of it is handling the optical design techniques to design a widely used ophthalmologic instrument called slit lamp. The optical and mechanical design of the slit lamp prototype was carefully projected in order to improve the best quality image, the comfort of the patient and the user, the simplicity of handling, the facility of production the availability of optical and mechanical components in the national market and the low cost of production. The main goal of this work was to realize a project using totally national technology, cheapening the cost and forming the optimum image required for the slit lamp optical system.
Resumo:
The organo-clay used in this work was prepared from a Na-montmorillonite (Wyoming-USA deposit) by treatment with water solution of hexadecyltrimethylammonium cations. As organo-clays exhibit strong sorptive capabilities for organic molecules, 2-mercapto-5-amino-1,3,4-thiadiazole organofunctional groups, with potential usefulness in chemical analysis, were incorporated on its solid surface. The physically adsorbed reagent did not present any restrictions in coordinating with several metal ions on the surface. The resultant organo-clay complex exhibited strong sorptive capability for removing mercury ions from water in which other metals and ions were also present. The purpose of this work is to study the selective separation of mercury(II) from aqueous solution using the organo-clay complex, measured by batch and chromatographic column techniques, and its application as preconcentration agent in a chemically modified carbon paste electrode for determination of mercury(II) in aqueous solution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The determination of lead ions directly in water, for application in analysis of samples of environmental interest, was studied by electroanalytical techniques. Linear sweep anodic stripping voltammetry with a carbon fiber disk ultramicroelectrode (7.0 mu m in diameter), without mercury film, has been used for lead determination, by standard addition, in purified water in the absence of supporting electrolyte. The response was linear in the range from 10.0 to 50.0 mu g L-1, with a detection limit of 0.8 mu g L-1, for 300 s preconcentration time, at -1.2 V and 1.0 V s(-1) scan rate. The reliability of the analytical procedure was evaluated by precision using relative standard deviations (5.6%, for three repetitive stripping current measurements of solution with 10.0 mu g L-1 lead ions) and by the accuracy with recovery experiments (mean of 110.8%) for the same concentration.
Mercury Redox Chemistry in the Negro River Basin, Amazon: The Role of Organic Matter and Solar Light
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This investigation was carried out at the Madeira River basin, located in the state of Rondonia, Brazilian Amazon. Fish from Madeira, Jaciparana, and Jamari rivers between 7 and 11 degrees parallels south and between 62 and 65 degrees meridians west in Rondonia state, Brazil, were sampled and chemically analyzed for mercury in order to evaluate if the inputs of this metal into the food-chain is occurring in levels reaching values above those recommended by the World Health Organization. This is because such an element is very dangerous when ingested by humans and its presence was extensively identified some years ago in the area, since it was utilized as an amalgam in processes for recovering alluvial gold.
Resumo:
Samples of water, suspended solids, and bottom sediments from the Madeira River, Rondonia state, Brazil, were physically and chemically analyzed to investigate the actual Hg mobilization in the aquatic environment and compare it with that of other heavy metals and elements in the area. Two dimensionless Hg preference ratios were defined, expressing (1) the ratio of Hg and other elements in the liquid phase divided by the ratio of Hg and other elements in bottom sediments (P(l.phase)) and (2) the ratio of Hg and other elements in the particulate matter divided by the ratio of Hg and other elements in bottom sediments (P(s.solids)). These preference ratios are useful for comparing Hg transport in three different phases (liquid, particulate matter, and bottom sediments). They also were applicable to any analyzed elementin the area studied, because they generated an almost constant value when the maximum calculated was divided by the minimum (P(l.phase) = 2931; P(s.solids) = 84) and because of their sensitivity to the dominance of sorption processes by Fe oxides and hydroxides. Mercury could be transported preferentially to other analyzed elements in the particulate phase only if its concentration reached values at least 10(4)-fold higher than those expected or quantified in the area. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A sensitive method based on square wave voltammetry is described for the quantitative determination of elemental sulfur, disulfide and mercaptan in gasoline using a mercury film electrode. These sulfur compounds can be quantified by direct dissolution of gasoline in a supporting electrolyte followed by subsequent voltammetric measurement. The supporting electrolyte is 1.4 mol L-1 sodium acetate and No acetic acid in methanol. Chemical and optimum operational conditions for the formation of the mercury film were analyzed in this study. The values obtained were a 4.3 mu m thickness for the mercury film, a 1000 rpm rotation frequency, -0.9 V applied potential and 600 s depositing time. Voltammetric measurements were obtained using square wave voltammetry with detection limits of the 3.0 x 10(-9), 1.6 x 10(-7) and 4.9 x 10(-7) mol L-1 for elemental sulfur, disulfide and mercaptan, respectively. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)