943 resultados para MCDONALD EXTENDED EXPONENTIAL MODEL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The progress in microsystem technology or nano technology places extended requirements to the fabrication processes. The trend is moving towards structuring within the nanometer scale on the one hand, and towards fabrication of structures with high aspect ratio (ratio of vertical vs. lateral dimensions) and large depths in the 100 µm scale on the other hand. Current procedures for the microstructuring of silicon are wet chemical etching and dry or plasma etching. A modern plasma etching technique for the structuring of silicon is the so-called "gas chopping" etching technique (also called "time-multiplexed etching"). In this etching technique, passivation cycles, which prevent lateral underetching of sidewalls, and etching cycles, which etch preferably in the vertical direction because of the sidewall passivation, are constantly alternated during the complete etching process. To do this, a CHF3/CH4 plasma, which generates CF monomeres is employed during the passivation cycle, and a SF6/Ar, which generates fluorine radicals and ions plasma is employed during the etching cycle. Depending on the requirements on the etched profile, the durations of the individual passivation and etching cycles are in the range of a few seconds up to several minutes. The profiles achieved with this etching process crucially depend on the flow of reactants, i.e. CF monomeres during the passivation cycle, and ions and fluorine radicals during the etching cycle, to the bottom of the profile, especially for profiles with high aspect ratio. With regard to the predictability of the etching processes, knowledge of the fundamental effects taking place during a gas chopping etching process, and their impact onto the resulting profile is required. For this purpose in the context of this work, a model for the description of the profile evolution of such etching processes is proposed, which considers the reactions (etching or deposition) at the sample surface on a phenomenological basis. Furthermore, the reactant transport inside the etching trench is modelled, based on angular distribution functions and on absorption probabilities at the sidewalls and bottom of the trench. A comparison of the simulated profiles with corresponding experimental profiles reveals that the proposed model reproduces the experimental profiles, if the angular distribution functions and absorption probabilities employed in the model is in agreement with data found in the literature. Therefor the model developed in the context of this work is an adequate description of the effects taking place during a gas chopping plasma etching process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is essentially twofold: first, to describe the use of spherical nonparametric estimators for determining statistical diagnostic fields from ensembles of feature tracks on a global domain, and second, to report the application of these techniques to data derived from a modern general circulation model. New spherical kernel functions are introduced that are more efficiently computed than the traditional exponential kernels. The data-driven techniques of cross-validation to determine the amount elf smoothing objectively, and adaptive smoothing to vary the smoothing locally, are also considered. Also introduced are techniques for combining seasonal statistical distributions to produce longer-term statistical distributions. Although all calculations are performed globally, only the results for the Northern Hemisphere winter (December, January, February) and Southern Hemisphere winter (June, July, August) cyclonic activity are presented, discussed, and compared with previous studies. Overall, results for the two hemispheric winters are in good agreement with previous studies, both for model-based studies and observational studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use an empirical statistical model to demonstrate significant skill in making extended-range forecasts of the monthly-mean Arctic Oscillation (AO). Forecast skill derives from persistent circulation anomalies in the lowermost stratosphere and is greatest during boreal winter. A comparison to the Southern Hemisphere provides evidence that both the time scale and predictability of the AO depend on the presence of persistent circulation anomalies just above the tropopause. These circulation anomalies most likely affect the troposphere through changes to waves in the upper troposphere, which induce surface pressure changes that correspond to the AO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple theoretical model for the intensification of tropical cyclones and polar lows is developed using a minimal set of physical assumptions. These disturbances are assumed to be balanced systems intensifying through the WISHE (Wind-Induced Surface Heat Exchange) intensification mechanism, driven by surface fluxes of heat and moisture into an atmosphere which is neutral to moist convection. The equation set is linearized about a resting basic state and solved as an initial-value problem. A system is predicted to intensify with an exponential perturbation growth rate scaled by the radial gradient of an efficiency parameter which crudely represents the effects of unsaturated processes. The form of this efficiency parameter is assumed to be defined by initial conditions, dependent on the nature of a pre-existing vortex required to precondition the atmosphere to a state in which the vortex can intensify. Evaluation of the simple model using a primitive-equation, nonlinear numerical model provides support for the prediction of exponential perturbation growth. Good agreement is found between the simple and numerical models for the sensitivities of the measured growth rate to various parameters, including surface roughness, the rate of transfer of heat and moisture from the ocean surface, and the scale for the growing vortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to revisit the von Liebig hypothesis by reexamining five samples of experimental data and by applying to it recent advances in Bayesian techniques. The samples were published by Hexem and Heady as described in a further section. Prior to outlining the estimation strategy, we discuss the intuition underlying our approach and, briefly, the literature on which it is based. We present an algorithm for the basic von Liebig formulation and demonstrate its application using simulated data (table 1). We then discuss the modifications needed to the basic model that facilitate estimation of a von Liebig frontier and we demonstrate the extended algorithm using simulated data (table 2). We then explore, empirically, the relationships between limiting water and nitrogen in the Hexem and Heady corn samples and compare the results between the two formulations (table 3). Finally, some conclusions and suggestions for further research are offered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commonly used repair rate models for repairable systems in the reliability literature are renewal processes, generalised renewal processes or non-homogeneous Poisson processes. In addition to these models, geometric processes (GP) are studied occasionally. The GP, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensities. This paper deals with the reliability modelling of failure processes for repairable systems where the failure intensity shows a bathtub-type non-monotonic behaviour. A new stochastic process, i.e. an extended Poisson process, is introduced in this paper. Reliability indices are presented, and the parameters of the new process are estimated. Experimental results on a data set demonstrate the validity of the new process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basic repair rate models for repairable systems may be homogeneous Poisson processes, renewal processes or nonhomogeneous Poisson processes. In addition to these models, geometric processes are studied occasionally. Geometric processes, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensity. This paper deals with the reliability modelling of the failure process of repairable systems when the failure intensity shows a bathtub type non-monotonic behaviour. A new stochastic process, an extended Poisson process, is introduced. Reliability indices and parameter estimation are presented. A comparison of this model with other repair models based on a dataset is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irreversible binding of key flavour disulphides to ovalbumin has been shown previously to occur in model systems. The extent of binding is determined by the availability of the sulphydryl groups to participate in disulphide exchange, influenced either by pH, or the state of the protein (native or heat-denatured). In this study, two further proteins, one with sulphydryl groups available in the native state (beta-lactoglobulin) and one with no sulphydryl groups in the native state (lysozyme) were used to confirm this hypothesis. When the investigation was extended to real food systems, a similar effect was shown when a commercial meat flavouring containing disulphides was added to heat-denatured ovalbumin. Furthermore, comparison of the volatiles generated from onions, cooked either alone, or in the presence of meat, showed a significant reduction of key onion-derived disulphides when cooked in the presence of meat, and an even greater reduction of trisulphides. These findings may have implications for consumer acceptance of food products; where these compounds are used as flavourings or where they occur naturally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This correspondence introduces a new orthogonal forward regression (OFR) model identification algorithm using D-optimality for model structure selection and is based on an M-estimators of parameter estimates. M-estimator is a classical robust parameter estimation technique to tackle bad data conditions such as outliers. Computationally, The M-estimator can be derived using an iterative reweighted least squares (IRLS) algorithm. D-optimality is a model structure robustness criterion in experimental design to tackle ill-conditioning in model Structure. The orthogonal forward regression (OFR), often based on the modified Gram-Schmidt procedure, is an efficient method incorporating structure selection and parameter estimation simultaneously. The basic idea of the proposed approach is to incorporate an IRLS inner loop into the modified Gram-Schmidt procedure. In this manner, the OFR algorithm for parsimonious model structure determination is extended to bad data conditions with improved performance via the derivation of parameter M-estimators with inherent robustness to outliers. Numerical examples are included to demonstrate the effectiveness of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.