983 resultados para Lp Extremal Polynomials
Resumo:
* The author was supported by NSF Grant No. DMS 9706883.
Resumo:
∗ Partially supported by Grant MM-428/94 of MESC.
Resumo:
We study, in Carathéodory assumptions, existence, continuation and continuous dependence of extremal solutions for an abstract and rather general class of hereditary differential equations. By some examples we prove that, unlike the nonfunctional case, solved Cauchy problems for hereditary differential equations may not have local extremal solutions.
Resumo:
* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Institute of Mathematics, Academia Sinica, Beijing 100080, People’s Republic of China.
Resumo:
Mathematics Subject Classification: 33C45.
Resumo:
Mathematics Subject Classification: 47B38, 31B10, 42B20, 42B15.
Resumo:
2000 Mathematics Subject Classification: 42B10, 43A32.
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C45
Resumo:
Sufficient conditions for the existence of Lp(k)-solutions of linear nonhomogeneous impulsive differential equations with unbounded linear operator are found. An example of the theory of the linear nonhomogeneous partial impulsive differential equations of parabolic type is given.
Resumo:
Let p(z) be an algebraic polynomial of degree n ¸ 2 with real coefficients and p(i) = p(¡i). According to Grace-Heawood Theorem, at least one zero of the derivative p0(z) is on the disk with center in the origin and radius cot(¼=n). In this paper is found the smallest domain containing at leas one zero of the derivative p0(z).
Resumo:
In this paper we present 35 new extremal binary self-dual doubly-even codes of length 88. Their inequivalence is established by invariants. Moreover, a construction of a binary self-dual [88, 44, 16] code, having an automorphism of order 21, is given.
Resumo:
AMS Subject Classification 2010: 11M26, 33C45, 42A38.
Resumo:
2000 Mathematics Subject Classification: 12D10
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
2000 Mathematics Subject Classification: 11T06, 13P10.