957 resultados para Light-emitting diodes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, I report on a comprehensive study about the photo-physical properties both in solution and in solid-state of a new thiophene based material (2,2’-(2,2’-bithiophene-5,5’-diyl)bis(5-butyl-5H-thieno[2,3-c]pyrrole-4,6)-dione (T4DIM) which shows an ambipolar semiconducting behavior together with electroluminescence in single-layer OLET device architecture[14

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess the performance of two light-emitting diode (LED)- and two laser fluorescence-based devices in detecting occlusal caries in vitro. Ninety-seven permanent molars were assessed twice by two examiners using two LED- (Midwest Caries - MID and VistaProof - VP) and two laser fluorescence-based (DIAGNOdent 2095 - LF and DIAGNOdent pen 2190 - LFpen) devices. After measuring, the teeth were histologically prepared and classified according to lesion extension. At D1 the specificities were 0.76 (LF and LFpen), 0.94 (MID), and 0.70 (VP); the sensitivities were 0.70 (LF), 0.62 (LFpen), 0.31 (MID), and 0.75 (VP). At D(3) threshold the specificities were 0.88 (LF), 0.87 (LFpen), 0.90 (MID), and 0.70 (VP); the sensitivities were 0.63 (LF and LFpen), 0.70 (MID), and 0.96 (VP). Spearman's rank correlations with histology were 0.56 (LF), 0.51 (LFpen), 0.55 (MID), and 0.58 (VP). Inter- and intraexaminer ICC values were high and varied from 0.83 to 0.90. Both LF devices seemed to be useful auxiliary tools to the conventional methods, presenting good reproducibility and better accuracy at D(3) threshold. MID was not able to differentiate sound surfaces from enamel caries and VP still needs improvement on the cut-off limits for its use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND To determine the effect of photoactivated disinfection (PAD) using toluidine blue and a light-emitting diode (LED) in the red spectrum (wave length at 625-635 nm) on species associated with periodontitis and peri-implantitis and bacteria within a periodontopathic biofilm. METHODS Sixteen single microbial species including 2 Porphyromonas gingivalis and 2 Aggregatibacter actinomycetemcomitans and a multispecies mixture consisting of 12 species suspended in saline without and with 25% human serum were exposed to PAD. Moreover, single-species biofilms consisting of 2 P. gingivalis and 2 A. actinomycetemcomitans strains and a multi-species biofilm on 24-well-plates, grown on titanium discs and in artificial periodontal pockets were exposed to PAD with and without pretreatment with 0.25% hydrogen peroxide. Changes in the viability were determined by counting the colony forming units (cfu). RESULTS PAD reduced the cfu counts in saline by 1.42 log₁₀ after LED application for 30s and by 1.99 log₁₀ after LED application for 60s compared with negative controls (each p<0.001). Serum did not inhibit the efficacy of PAD. PAD reduced statistically significantly (p<0.05) the cfu counts of the P. gingivalis biofilms. The viability of the A. actinomycetemcomitans biofilms and the multi-species biofilms was statistically significantly decreased when PAD was applied after a pretreatment with 0.25% hydrogen peroxide. The biofilm formed in artificial pockets was more sensitive to PAD with and without pretreatment with hydrogen peroxide compared with those formed on titanium discs. CONCLUSIONS PAD using a LED was effective against periodontopathic bacterial species and reduced viability in biofilms but was not able to completely destroy complex biofilms. The use of PAD following pretreatment with hydrogen peroxide resulted in an additional increase in the antimicrobial activity which may represent a new alternative to treat periodontal and peri-implant infections thus warranting further testing in clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

III-nitride nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitride nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow with high order on pre-defined sites on a pre-patterned substrate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, interest in light-emitting diode (LED) lighting has been growing because of its high efficacy, lifetime and ruggedness. This paper proposes a better adaptation of LED lamps to the technical requirements of photovoltaic lighting domestic systems, whose main quality criteria are reliability and that behave as voltage power supplies. As the key element of reliability in LED lamps is temperature, a solution is proposed for driving LED lamps using voltage sources, such as photovoltaic system batteries, with a control architecture based on pulse width modulation signal that regulates the current applied according to the LED lamp temperature. A prototype of the LED lamp has been implemented and tested to show its good performance at different temperatures and at different battery voltages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a newly designed polymer light-emitting diode with a bandwidth of ∼350 kHz for high-speed visible light communications. Using this new polymer light-emitting diode as a transmitter, we have achieved a record transmission speed of 10 Mb/s for a polymer light-emitting diode-based optical communication system with an orthogonal frequency division multiplexing technique, matching the performance of single carrier formats using multitap equalization. For achieving such a high data-rate, a power pre-emphasis technique was adopted. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on recent progress in the generation of non-diffracting (Bessel) beams from semiconductor light sources including both edge-emitting and surface-emitting semiconductor lasers as well as light-emitting diodes (LEDs). Bessel beams at the power level of Watts with central lobe diameters of a few to tens of micrometers were achieved from compact and highly efficient lasers. The practicality of reducing the central lobe size of the Bessel beam generated with high-power broad-stripe semiconductor lasers and LEDs to a level unachievable by means of traditional focusing has been demonstrated. We also discuss an approach to exceed the limit of power density for the focusing of radiation with high beam propagation parameter M2. Finally, we consider the potential of the semiconductor lasers for applications in optical trapping/tweezing and the perspectives to replace their gas and solid-state laser counterparts for a range of implementations in optical manipulation towards lab-on-chip configurations. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the degree of conversion (DC%) of one experimental and different brands of composite resins light-cured by two light sources (one LED and one argon laser). The percentage of unreacted C = C was determined from the ratio of absorbance intensities of aliphatic C = C (peak at 1637 cm−1) against internal standards before and after curing: aromatic C–C (peak at 1610 cm−1) except for P90, where %C = C bonds was given for C–O–C (883 cm−1) and C–C (1257 cm−1). ANOVA and Tukey’s test revealed no statistically significant difference among Z350 (67.17), Z250 (69.52) and experimental (66.61 ± 2.03) with LED, just among them and Evolu-X (75.51) and P90 (32.05) that showed higher and lower DC%, respectively. For the argon laser, there were no differences among Z250 (70.67), Z350 (69.60), experimental (65.66) and Evolu-X (73, 37), however a significant difference was observed for P90 (36.80), which showed lowest DC%. The light sources showed similar DC%, however the main difference was observed regarding the composite resins. The lowest DC% was observed for the argon laser. P90 showed the lowest DC% for both light-curing sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on conical refraction (CR) experiments with low-coherent light sources such as light-emitting diodes (LEDs) that demonstrated different CR patterns. The change of a pinhole size from 25 to 100 μm reduced the spatial coherence of the LED radiation and resulted in the disappearance of the dark Poggendorf ring in the Lloyd's plane. This is attributed to the interference nature of the Lloyd's distribution and is found to be in excellent agreement with the paraxial dual-cone model of CR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin layers of indium tin oxide are widely used as transparent coatings and electrodes in solar energy cells, flat-panel displays, antireflection coatings, radiation protection and lithium-ion battery materials, because they have the characteristics of low resistivity, strong absorption at ultraviolet wavelengths, high transmission in the visible, high reflectivity in the far-infrared and strong attenuation in the microwave region. However, there is often a trade-off between electrical conductivity and transparency at visible wavelengths for indium tin oxide and other transparent conducting oxides. Here, we report the growth of layers of indium tin oxide nanowires that show optimum electronic and photonic properties and demonstrate their use as fully transparent top contacts in the visible to near-infrared region for light-emitting devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis examines the properties of BPEs of various configurations and under different operating conditions in a large planar LEC system. Detailed analysis of time-lapsed fluorescence images allows us to calculate the doping propagation speed from the BPEs. By introducing a linear array of BPEs or dispersed ITO particles, multiple light-emitting junctions or a bulk homojunction have been demonstrated. In conclusion, it has been observed that both applied bias voltages and sizes of BPEs affected the electrochemical doping from the BPE. If the applied bias voltage was initially not sufficiently high enough, a delay in appearance of doping from the BPE would take place. Experiments of parallel BPEs with different sizes (large, medium, small) demonstrate that the potential difference across the BPEs has played a vital role in doping initiation. Also, the p-doping propagation distance from medium-sized BPE has displayed an exponential growth over the time-span of 70 seconds. Experiments with a linear array of BPEs with the same size demonstrate that the doping propagation speed of each floating BPE was the same regardless of its position between the driving electrodes. Probing experiments under high driving voltages further demonstrated the potential of having a much more efficient light emission from an LEC with multiple BPEs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skin colour is an important quality parameter that influences mango fruit marketability. The mango industry is interested in controlled induction of skin blush in mangoes. It is desirable to understand the control of anthocyanin accumulation in mango skin. Among environmental factors known to induce anthocyanin accumulation in plants, light is the most studied. Light exposure induces pigmentation in various fruits, including apple, strawberry and grape. The effect of different light qualities on skin blush in mango fruit has received relatively little attention. The objective of this study was to assess anthocyanin accumulation and blush in response to blue, red and far red light from light-emitting diodes (LEDs) as applied to harvested mango fruit skin during storage at 12°C. Except for red light, the other wavelengths induced anthocyanin accumulation and skin blush as compared to the dark control treatment. Anthocyanin concentration and a∗ values were highest in blue light exposed fruit skin. This wavelength enhanced phenylalanine ammonia lyase activity in the mango skin, which may be associated with increased pigmentation. LED light treatment did not affect other fruit quality parameters at 21 days of storage, including firmness, total soluble solids and titratable acidity. Overall, the findings suggest that postharvest treatment with blue light can induce skin blush in mango fruit, which potentially may enhance their commercial value.