873 resultados para Life cycle assessment
Resumo:
The biphasic (pelagobenthic) life cycle is found throughout the animal kingdom, and includes gametogenesis, embryogenesis, and metamorphosis. From a tangled web of hypotheses on the origin and evolution of the metazoan pelagobenthic life cycle, current opinion appears to favor a simple, larval-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This hypothesis derives originally from Haeckel's (1874) Gastraea theory of ontogeny recapitulating phylogeny, in which the gastrula is viewed as the recapitulation of a gastracan ancestor that evolved via selection on a simple, planktonic hollow ball of cells to develop the capacity to feed. Here, we propose an equally plausible hypothesis that the origin of the metazoan pelagobenthic life cycle was a direct consequence of sexual reproduction in a likely holobenthic ancestor. In doing so, we take into account new insights from poriferan development and from molecular phylogenies. In this scenario, the gastrula does not represent a recapitulation, but simply an embryological stage that is an outcome of sexual reproduction. The embryo can itself be considered as the precursor to a biphasic lifestyle, with the embryo representing one phase and the adult another phase. This hypothesis is more parsimonious because it precludes the need for multiple, independent origins of the benthic form. It is then reasonable to consider that multilayered, ciliated embryos ultimately released into the water column are subject to natural selection for dispersal/longevity/feeding that sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. These new insights from poriferan development thus clearly support the intercalation hypothesis of bilaterian larval evolution, which we now believe should be extended to discussions of the origin of biphasy in the metazoan last common ancestor.
Resumo:
Animals and plants in temperate regions must adapt their life cycle to pronounced seasonal variation. The research effort that has gone into studying these cyclical life history events, or phenological traits, has increased greatly in recent decades. As phenological traits are often correlated to temperature, they are relevant to study in terms of understanding the effect of short term environmental variation as well as long term climate change. Because of this, changes in phenology are the most obvious and among the most commonly reported responses to climate change. Moreover, phenological traits are important for fitness as they determine the biotic and abiotic environment an individual encounters. Fine-tuning of phenology allows for synchronisation at a local scale to mates, food resources and appropriate weather conditions. On a between-population scale, variation in phenology may reflect regional variation in climate. Such differences can not only give insights to life cycle adaptation, but also to how populations may respond to environmental change through time. This applies both on an ecological scale through phenotypic plasticity as well as an evolutionary scale through genetic adaptation. In this thesis I have used statistical and experimental methods to investigate both the larger geographical patterns as well as mechanisms of fine-tuning of phenology of several butterfly species. The main focus, however, is on the orange tip butterfly, Anthocharis cardamines, in Sweden and the United Kingdom. I show a contrasting effect of spring temperature and winter condition on spring phenology for three out of the five studied butterfly species. For A. cardamines there are population differences in traits responding to these environmental factors between and within Sweden and the UK that suggest adaptation to local environmental conditions. All populations show a strong negative plastic relationship between spring temperature and spring phenology, while the opposite is true for winter cold duration. Spring phenology is shifted earlier with increasing cold duration. The environmental variables show correlations, for example, during a warm year a short winter delays phenology while a warm spring speeds phenology up. Correlations between the environmental variables also occur through space, as the locations that have long winters also have cold springs. The combined effects of these two environmental variables cause a complex geographical pattern of phenology across the UK and Sweden. When predicting phenology with future climate change or interpreting larger geographical patterns one must therefore have a good enough understanding of how the phenology is controlled and take the relevant environmental factors in to account. In terms of the effect of phenological change, it should be discussed with regards to change in life cycle timing among interacting species. For example, the phenology of the host plants is important for A. cardamines fitness, and it is also the main determining factor for oviposition. In summary, this thesis shows that the broad geographical pattern of phenology of the butterflies is formed by counteracting environmental variables, but that there also are significant population differences that enable fine-tuning of phenology according to the seasonal progression and variation at the local scale.
Resumo:
This article takes a broader theoretical perspective of the retail life cycle by incorporating threshold periods at important inflection points in the international growth process. Specifically, it considers one threshold interval between an early phase of disjointed international expansion and a more focused, accelerated international growth programme. It concludes that executives need to consider a set of threshold periods during the development and growth of international store operations, understand why these events occur, and consider in what ways to respond to them to overcome and cross the threshold. Salient lessons are extracted from Wal-Mart's experiences during the threshold period for other international managers. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Whole life costing (WLC) has become the best practice in construction procurement and it is likely to be a major issue in predicting whole life costs of a construction project accurately. However, different expectations from different organizations throughout a project's life and the lack of data, monitoring targets, and long-term interest for many key players are obstacles to be overcome if WLC is to be implemented. A questionnaire survey was undertaken to investigate a set of ten common factors and 188 individual factors. These were grouped into eight critical categories (project scope, time, cost, quality, contract/administration, human resource, risk, and health and safety) by project phase, as perceived by the clients, contractors and subcontractors in order to identify critical success factors for whole life performance assessment (WLPA). Using a relative importance index, the top ten critical factors for each category, from the perspective of project participants, were analyzed and ranked. Their agreement on those categories and factors were analyzed using Spearman's rank correlation. All participants identify “Type of Project” as the most common critical factor in the eight categories for WLPA. Using the relative index ranking technique and weighted average methods, it was found that the most critical individual factors in each category were: “clarity of contract” (scope); “fixed construction period” (time); “precise project budget estimate” (cost); “material quality” (quality); “mutual/trusting relationships” (contract/administration); “leadership/team management” (human resource); and “management of work safety on site” (health and safety). There was relatively a high agreement on these categories among all participants. Obviously, with 80 critical factors of WLPA, there is a stronger positive relationship between client and contactor rather than contractor and subcontractor, client and subcontractor. Putting these critical factors into a criteria matrix can facilitate an initial framework of WLPA in order to aid decision making in the public sector in South Korea for evaluation/selection process of a construction project at the bid stage.
Resumo:
As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.
Resumo:
This research examines the evolution of interorganizational relationships in a franchising context. Using U-curve theory, we develop three hypotheses and contrast them with traditional lifecycle theory. Three groups of constructs are affected by lifecycle: cooperation variables, dependence variables, and relationship variables. Four distinct stages emerge, with highest levels of variables in the honeymoon stage, lower levels in routine and crossroad stages, and increasing levels in the stabilization stage. Franchisors should strive for “stability on high levels” before operational realities influence the franchisees. Franchisees’ intermediate lifecycle phases are most critical for the system, since opportunistic behavior and switching are most likely.
Resumo:
Energy price is related to more than half of the total life cycle cost of asphalt pavements. Furthermore, the fluctuation related to price of energy has been much higher than the general inflation and interest rate. This makes the energy price inflation an important variable that should be addressed when performing life cycle cost (LCC) studies re- garding asphalt pavements. The present value of future costs is highly sensitive to the selected discount rate. Therefore, the choice of the discount rate is the most critical element in LCC analysis during the life time of a project. The objective of the paper is to present a discount rate for asphalt pavement projects as a function of interest rate, general inflation and energy price inflation. The discount rate is defined based on the portion of the energy related costs during the life time of the pavement. Consequently, it can reflect the financial risks related to the energy price in asphalt pavement projects. It is suggested that a discount rate sensitivity analysis for asphalt pavements in Sweden should range between –20 and 30%.