995 resultados para Library theory
Resumo:
Nitrogen adsorption on a surface of a non-porous reference material is widely used in the characterization. Traditionally, the enhancement of solid-fluid potential in a porous solid is accounted for by incorporating the surface curvature into the solid-fluid Potential of the flat reference surface. However, this calculation procedure has not been justified experimentally. In this paper, we derive the solid-fluid potential of mesoporous MCM-41 solid by using solely the adsorption isotherm of that solid. This solid-fluid potential is then compared with that of the non-porous reference surface. In derivation of the solid-fluid potential for both reference surface and mesoporous MCM-41 silica (diameter ranging front 3 to 6.5 nm) we employ the nonlocal density functional theory developed for amorphous solids. It is found that, to out, surprise, the solid-fluid potential of a porous solid is practically the same as that for the reference surface, indicating that there is no enhancement due to Surface curvature. This requires further investigations to explain this unusual departure from our conventional wisdom of curvature-induced enhancement. Accepting the curvature-independent solid-fluid potential derived from the non-porous reference surface, we analyze the hysteresis features of a series of MCM-41 samples. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Professional attitudes and behaviours have only recently been explicitly recognized by medical educators as legitimate and necessary components of global competence, although the idea of Fitness to Practice has always presupposed acceptable professional behaviour. Medical schools have recently begun to introduce teaching and assessment of professionalism, including attitudes and behaviours. Partly as a result of the difficulty of assessment in this area, selection of students is receiving greater attention, in the pursuit of globally competent graduates. However, selection processes may be overrated for this purpose. Assessing actual attitudes and behaviour during the course is arguably a better way of ensuring that medical graduates are competent in these areas. I argue that judgments about attitudinal and behavioural competence are legitimate, and need be no more arbitrary than those made about scientific or clinical knowledge and skills, but also that these judgments should be restricted to what is agreed to be unacceptable behaviour, rather titan attempting to rate attitudes and behaviour positively. This model introduces students to the way in which their behaviours will be judged in their professional lives by registration authorities. These theoretical positions are illustrated by a recent case of academic failure based on inadequate attitudes and behaviours.
Resumo:
A previously developed one-dimensional mathematical model, to explain raceway hysteresis, is used to predict the raceway diameter in operating blast furnaces and hot models. Raceway size obtained from the open literature under various conditions for various blast furnaces are compared with computed predictions. In addition the predictions are also compared with published outcomes from other hot models. Simulated results on raceway diameter are in very good agreement with published operating blast furnace and hot model data. The effect of various parameters such as tuyere and hearth diameter, coke size and density, void fraction and bed height on raceway diameter has been studied.
Resumo:
We apply the projected Gross-Pitaevskii equation (PGPE) formalism to the experimental problem of the shift in critical temperature T-c of a harmonically confined Bose gas as reported in Gerbier , Phys. Rev. Lett. 92, 030405 (2004). The PGPE method includes critical fluctuations and we find the results differ from various mean-field theories, and are in best agreement with experimental data. To unequivocally observe beyond mean-field effects, however, the experimental precision must either improve by an order of magnitude, or consider more strongly interacting systems. This is the first application of a classical field method to make quantitative comparison with experiment.
Resumo:
We provide here a detailed theoretical explanation of the floating molecule or levitation effect, for molecules diffusing through nanopores, using the oscillator model theory (Phys. Rev. Lett. 2003, 91, 126102) recently developed in this laboratory. It is shown that on reduction of pore size the effect occurs due to decrease in frequency of wall collision of diffusing particles at a critical pore size. This effect is, however, absent at high temperatures where the ratio of kinetic energy to the solid-fluid interaction strength is sufficiently large. It is shown that the transport diffusivities scale with this ratio. Scaling of transport diffusivities with respect to mass is also observed, even in the presence of interactions.
Resumo:
In this paper, we consider dynamic programming for the election timing in the majoritarian parliamentary system such as in Australia, where the government has a constitutional right to call an early election. This right can give the government an advantage to remain in power for as long as possible by calling an election, when its popularity is high. On the other hand, the opposition's natural objective is to gain power, and it will apply controls termed as "boosts" to reduce the chance of the government being re-elected by introducing policy and economic responses. In this paper, we explore equilibrium solutions to the government, and the opposition strategies in a political game using stochastic dynamic programming. Results are given in terms of the expected remaining life in power, call and boost probabilities at each time at any level of popularity.
Resumo:
Theory of mind (ToM) was examined in late-signing deaf children in two studies by using standard tests and measures of spontaneous talk about inner states of perception, affect and cognition during storytelling. In Study 1, there were 21 deaf children aged 6 to 11 years and 13 typical-hearing children matched with the deaf by chronological age. In Study 2, there were 17 deaf children aged 6 to 12 years and 17 typical-hearing preschoolers aged 4 to 5 years who were matched with the deaf by ToM test performance. In addition to replicating the consistently reported finding of poor performance on standard false belief tests by late-signing deaf children, significant correlations emerged in both studies between deaf children's ToM test scores and their spontaneous narrative talk about imaginative cognition (e.g. 'pretend'). In Study 2, with a new set of purpose-built pictures that evoked richer and more complex mentalistic narration than the published picture book of Study 1, results of multiple regression analyses showed that children's narrative talk about imaginative cognition was uniquely important, over and above hearing status and talking of other kinds of mental states, in predicting ToM scores. The same was true of children's elaborated narrative talk using utterances that either spelt out thoughts, explained inner states or introduced contrastives. In addition, results of a Guttman scalograrn analysis in Study 2 suggested a consistent sequence in narrative and standard test performance by deaf and hearing children that went from (1) narrative mention of visible (affective or perceptual) mental states only, along with FB failure, to (2) narrative mention of cognitive states along with (1), to (3) elaborated narrative talk about inner states along with (2), and finally to (4) simple and elaborated narrative talk about affective/perceptual and cognitive states along with FIB test success. Possible explanations for this performance ordering, as well as for the observed correlations in both studies between ToM test scores and narrative variables, were considered.
Resumo:
Through a prospective study of 70 youths staying at homeless-youth shelters, the authors tested the utility of I. Ajzen's (1991) theory of planned behavior (TPB), by comparing the constructs of self-efficacy with perceived behavioral control (PBC), in predicting people's rule-following behavior during shelter stays. They performed the 1st wave of data collection through a questionnaire assessing the standard TPB components of attitudes, subjective norms, PBC, and behavioral intentions in relation to following the set rules at youth shelters. Further, they distinguished between items assessing PBC (or perceived control) and those reflecting self-efficacy (or perceived difficulty). At the completion of each youth's stay at the shelter, shelter staff rated the rule adherence for that participant. Regression analyses revealed some support for the TPB in that subjective norm was a significant predictor of intentions. However, self-efficacy emerged as the strongest predictor of intentions and was the only significant predictor of rule-following behavior. Thus, the results of the present study indicate the possibility that self-efficacy is integral to predicting rule adherence within this context and reaffirm the importance of incorporating notions of people's perceived ease or difficulty in performing actions in models of attitude-behavior prediction.
Resumo:
The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HTA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no differences in the proportion of mental state words between the two groups, although the participants with HFA/AS were less inclined to provide explanations for characters' mental states. No between-group differences existed on the central coherence questions of the forced-choice response task, and the participants with HTA/AS included an equivalent proportion of explanations for non-mental state phenomena in their narratives as did controls. These results support the theory of mind deficit account of autism spectrum disorders, and suggest that difficulties in mental state attribution cannot be exclusively attributed to weak central coherence.
Resumo:
In the absence of an external frame of reference-i.e., in background independent theories such as general relativity-physical degrees of freedom must describe relations between systems. Using a simple model, we investigate how such a relational quantum theory naturally arises by promoting reference systems to the status of dynamical entities. Our goal is twofold. First, we demonstrate using elementary quantum theory how any quantum mechanical experiment admits a purely relational description at a fundamental. Second, we describe how the original non-relational theory approximately emerges from the fully relational theory when reference systems become semi-classical. Our technique is motivated by a Bayesian approach to quantum mechanics, and relies on the noiseless subsystem method of quantum information science used to protect quantum states against undesired noise. The relational theory naturally predicts a fundamental decoherence mechanism, so an arrow of time emerges from a time-symmetric theory. Moreover, our model circumvents the problem of the collapse of the wave packet as the probability interpretation is only ever applied to diagonal density operators. Finally, the physical states of the relational theory can be described in terms of spin networks introduced by Penrose as a combinatorial description of geometry, and widely studied in the loop formulation of quantum gravity. Thus, our simple bottom-up approach (starting from the semiclassical limit to derive the fully relational quantum theory) may offer interesting insights on the low energy limit of quantum gravity.
Resumo:
A theory is discussed of single-component transport in nanopores, recently developed by Bhatia and coworkers. The theory considers the oscillatory motion of molecules between diffuse wall collisions, arising from the fluid-wall interaction, along with superimposed viscous flow due to fluid-fluid interaction. The theory is tested against molecular dynamics simulations for hydrogen, methane, and carbon tetrafluoride flow in cylindrical nanopores in silica. Although exact at low densities, the theory performs well even at high densities, with the density dependency of the transport coefficient arising from viscous effects. Such viscous effects are reduced at high densities because of the large increase in viscosity, which explains the maximum in the transport coefficient with increase in density. Further, it is seen that in narrow pore sizes of less than two molecular diameters, where a complete monolayer cannot form on the surface, the mutual interference of molecules on opposite sides of the cross section can reduce the transport coefficient, and lead to a maximum in the transport coefficient with increasing density. The theory is also tested for the case of partially diffuse reflection and shows the viscous contribution to be negligible when the reflection is nearly specular. (c) 2005 American Institute of Chemical Engineers AIChE J, 52: 29-38, 2006.
Resumo:
Objective: To validate the unidimensionality of the Action Research Arm Test (ARAT) using Mokken analysis and to examine whether scores of the ARAT can be transformed into interval scores using Rasch analysis. Subjects and methods: A total of 351 patients with stroke were recruited from 5 rehabilitation departments located in 4 regions of Taiwan. The 19-item ARAT was administered to all the subjects by a physical therapist. The data were analysed using item response theory by non-parametric Mokken analysis followed by Rasch analysis. Results: The results supported a unidimensional scale of the 19-item ARAT by Mokken analysis, with the scalability coefficient H = 0.95. Except for the item pinch ball bearing 3rd finger and thumb'', the remaining 18 items have a consistently hierarchical order along the upper extremity function's continuum. In contrast, the Rasch analysis, with a stepwise deletion of misfit items, showed that only 4 items (grasp ball'', grasp block 5 cm(3)'', grasp block 2.5 cm(3)'', and grip tube 1 cm(3)'') fit the Rasch rating scale model's expectations. Conclusion: Our findings indicated that the 19-item ARAT constituted a unidimensional construct measuring upper extremity function in stroke patients. However, the results did not support the premise that the raw sum scores of the ARAT can be transformed into interval Rasch scores. Thus, the raw sum scores of the ARAT can provide information only about order of patients on their upper extremity functional abilities, but not represent each patient's exact functioning.